[1]任玉荣,王佳伟,丁建宁.负极材料NiO/rGO/PPy的制备及储锂性能[J].常州大学学报(自然科学版),2015,(03):18-23.[doi:10.3969/j.issn.2095-0411.2015.03.004]
 REN Yurong,WANG Jiawei,DING Jianning.The Synthesis and Lithium Storage Performance of NiO/rGO/PPy Anode Materials[J].Journal of Changzhou University(Natural Science Edition),2015,(03):18-23.[doi:10.3969/j.issn.2095-0411.2015.03.004]
点击复制

负极材料NiO/rGO/PPy的制备及储锂性能()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
期数:
2015年03期
页码:
18-23
栏目:
出版日期:
2015-07-25

文章信息/Info

Title:
The Synthesis and Lithium Storage Performance of NiO/rGO/PPy Anode Materials
作者:
任玉荣王佳伟丁建宁
常州大学 材料科学与工程学院
Author(s):
REN YurongWANG Jiawei DING Jianning
School of Materials Science and Engineering,Changzhou University, Changzhou 213164,China
关键词:
锂离子电池负极材料NiO纳米线还原氧化石墨烯电化学性能
Keywords:
Lithium-ion batteries anode NiO nanowiresreduced grapheneoxide electrochemical performance
分类号:
TB 332
DOI:
10.3969/j.issn.2095-0411.2015.03.004
文献标志码:
A
摘要:
以水热法制备NiO/还原氧化石墨烯(NiO/rGO)前驱体,在Ar气氛下,300℃烧结成NiO纳米线/rGO二元复合物,然后以此二元复合物为模板,通过化学氧化法聚合吡咯(Py)单体,制备出NiO纳米线/还原氧化石墨烯/聚吡咯(NiO/rGO/PPy,简称PNG)三元复合材料。利用X射线衍射(XRD)、透射电镜(TEM)、红外光谱(FT-IR)、拉曼光谱(Raman)以及X射线光电子能谱(XPS)对其进行表征。结果表明,NiO纳米线的平均直径为5~10〖KG3x〗nm,平均长度为100~200〖KG3x〗nm,均匀的分布在还原氧化石墨烯表面,聚吡咯在还原氧化石墨烯表面也具有较高分散性,与NiO和rGO形成部分三明治结构。利用恒流充放电对PNG复合物进行电化学性能研究,展现出良好的电化学性能。当倍率为0.2〖KG3x〗C时,首次放电比容量达到1 0806〖KG3x〗mA·h/g,首次可逆比容量达到830〖KG3x〗mA·h/g,40次循环后容量499.6〖KG3x〗mA·h/g。
Abstract:
Precursors of NiO / reducedgrapheneoxide (NiO / rGO) were synthesized with traditional hydrothermal method, then sintering NiO nanowire / rGO binary complex in the Ar atmosphere, at 300〖KG3x〗℃. Further, NiO nanowire/reduced graphene oxide/polypyrrole (NiO/rGO/PPy, referred to as PNG) ternary composites were prepared by chemical oxidation polymerization pyrrole (Py) monomer with a template of this above binary complex. X-ray diffraction (XRD), transmission electron microscopy (TEM), infrared spectroscopy (FT-IR), Raman spectroscopy (Raman) characterization and X-ray photoelectron spectrum (XPS) were used. The results show that average diameter 5-10〖KG3x〗nm of NiO nanowires, the average length of 100—200 nm, was evenly distributed in the surface of the reducedgrapheneoxide, and polypyrrolein the surface of the reduced graphene oxidedelivered a high dispersibilityas well, which formed a sandwich structure. The electrochemical properties of the PNG complexes were studied by the constant current charging and discharging. At 0.2C rate, the first discharge capacity reached 1 0806〖KG3x〗mA·h/g, andthe first reversible capacity 〖JP2〗reached 830〖KG3x〗mA·h/g. After 40 cycles, the discharge capacity contained 499.6〖KG3x〗mA·h/g.〖JP〗 This method significantly improved electrochemical properties of pure NiO material.

参考文献/References:

[1] ROMERO P G.Hybrid Organic-Inorganic MaterialsIn Search of Synergic Activity[J]. Adv Mater, 2001, 13(3): 163-174.
[2]KALAITZIDOU K, FUKUSHIMA H, DRZAL L T.Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets[J]. Carbon, 2007, 45(7): 1446-1452.
[3]HAN Y Q, LU Y.Characterization and electrical properties of conductive polymer/colloidal graphite oxide nanocomposites [J]. Compos Sci Technol, 2009, 69(7-8): 1231-1237.
[4]陈爱华, 王海侨, 赵彬, 等. Fe3O4/聚吡咯复合材料的制备及表征[J]. 复合材料学报, 2004, 21(2): 157-160.
[5]ZHANG D, LUO L, LIAO Q,et al. Polypyrrole/ZnS core/shell coaxial nanowires prepared by anodic aluminum oxide template methods [J]. J Phys Chem C, 2011, 115(5): 2360-2365.
[6]SONAVANE A C,NAMDAR A I, DALAVI D S, et al. Simple and rapid synthesis of NiO/PPy thin films with improved electrochromic performance [J]. Electrochim Acta, 2010, 55(3): 2344-174.
[7]ZANG J F,LI X D. In situ synthesis of ultrane β-MnO2/polypyrrolenanorod composites forhigh-performance supercapacitors [J]. J Mater Chem, 2011, 21: 10965-10969.
[8]ZHANG K, ZHANG L L, ZHAO X S, et al.Graphene/polyaniline nanofiber composites as supercapacitor electrodes [J]. Chem Mater, 2010, 22(4): 1392-1401.
[9]KUO T Y, CHEN S C, PENG W C, et al. Influences of process parameters on texture and microstructure of NiO films [J].Thin Solid Films, 2011, 519(15): 4940-4943.
[10]PRASAD D H, JI H I, KIM H R, et al. Effect of nickel nano-particle sintering on methane reforming activity of Ni-CGO cermet anodes for internal steam reforming SOFCs [J]. Appl Catal B: Environ, 2011, 101(3-4): 531-539.
[11]RAHMAN M M, CHOU S L, ZHONG C, et al. Spray pyrolyzedNiO-C nanocomposite as an anode material for the lithium-ion battery with enhanced capacity retention [J]. SolidState Ionics, 2010, 180(40): 1646-1651.
[12] ANSAR A, SOYSAL D, SCHILLER G, et al. Nanostructured functional layers for solid oxide fuel cells [J]. Int J Energy Res, 2009, 33: 1191-1202.
[13]HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide [J]. J Am Chem Soc, 1958, 80(6): 1339-1342.
[14]LI B J, CAO H Q, SHAO J, et al. Improved performances of β-Ni(OH)2@reduced-graphene-oxide inNi-MH and Li-ion batteries [J]. Chem Commun, 2011, 47: 3159-3161.
[15]SAWANGPHRUK M, SRIMUK P, CHIOCHAN P, et al. High-performance supercapacitor of manganese oxide/reduced graphene oxide nanocomposite coated on flexiblecarbon fiber paper [J]. Carbon, 2013, 60: 109-116.
[16]MAO Y, KONG Q Y, GUO B K, et al. Polypyrrole-NiO composite as high-performance lithium storagematerial [J]. Electrochim Acta, 2013, 105: 162-169.
[17]YUE W B, LIN Z Z, JIANG S H, et al. Preparation of graphene-encapsulated mesoporous metal oxides and theirapplication as anode materials for lithium-ion batteries [J]. J Mater Chem, 2012, 22: 16318-16323.
[18]ZHOU G M, WANG D W, YIN L C, et al. Oxygen Bridges between Nionanosheets and graphene forimprovement of Lithium Storage [J]. ACS Nano, 2012, 6(4): 3214-3223.
[19]ZHAO B, SONG J S, LIU P, et al. Monolayer graphene/NiOnanosheets with two-dimension structure forsupercapacitors [J]. J MaterChem, 2011, 21: 18792-18798.
[20]EDA G, CHHOWALLA M. Graphene-based Composite Thin Filmsfor Electronics [J]. Nano Lett, 2009, 9(2): 814-818.
[21]WANG H L, ROBINSON J T, DIANKOV G, et al. Nanocrystal growth on graphene with various degrees of oxidation [J]. J Am Chem Soc, 2010, 132: 3270-3271.
[22]CAI G F, TU J P, ZHANG J, et al. An efficient route to a porous NiO/reduced graphene oxide hybrid film withhighly improved electrochromic properties [J]. Nanoscale, 2012,4(18): 5724-5730.
[23]ZOU Y Q, WANG Y. NiO nanosheets grown on graphene nanosheets as superior anode materials for Li-ion batteries [J]. Nanoscale, 2011,3(6): 2615-2620.

相似文献/References:

[1]周 慧,王 进,许 娟,等.LiFePO4/石墨烯复合材料的电化学性能比较[J].常州大学学报(自然科学版),2013,(01):76.[doi:10.3969/j.issn.2095-0411.2013.01.016]
 ZHOU Hui,WANG Jin,XU Juan,et al.Comparative Study of Electrochemical Performance of LiFePO4/Graphene Composites[J].Journal of Changzhou University(Natural Science Edition),2013,(03):76.[doi:10.3969/j.issn.2095-0411.2013.01.016]
[2]王 进,展亮亮,许 娟,等.锂离子电池负极材料SnO2-Gn-C三元复合物的制备及其电化学性能[J].常州大学学报(自然科学版),2013,(04):74.[doi:10.3969/j.issn.2095-0411.2013.04.016]
 WANG Jin,ZHAN Liang liang,XU Juan,et al.Preparation of SnO2-Gn-C Ternary Composite and its Electrochemical Performance as Anode Material of Lithium Ion Batteries[J].Journal of Changzhou University(Natural Science Edition),2013,(03):74.[doi:10.3969/j.issn.2095-0411.2013.04.016]
[3]刘娟.工业CT在锂离子电池失效分析检测中的应用[J].常州大学学报(自然科学版),2021,33(01):15.[doi:10.3969/j.issn.2095-0411.2021.01.003]
 LIU Juan.Application of Industrical Computed Tomography on the Failure Analysis of Lithium Ion Batteries[J].Journal of Changzhou University(Natural Science Edition),2021,33(03):15.[doi:10.3969/j.issn.2095-0411.2021.01.003]
[4]何大方,陆俊泓,朱 晔,等.中空球形MoS2/C复合材料的构筑及储锂性能[J].常州大学学报(自然科学版),2024,36(05):1.[doi:10.3969/j.issn.2095-0411.2024.05.001]
 HE Dafang,LU Junhong,ZHU Ye,et al.Preparation and lithium-storage properties of hollow sphere MoS2/C nanocomposites[J].Journal of Changzhou University(Natural Science Edition),2024,36(03):1.[doi:10.3969/j.issn.2095-0411.2024.05.001]

备注/Memo

备注/Memo:
国家自然科学基金(51374175);江苏省产学研创新基金(BY2014037-31);材料腐蚀与防护四川省重点实验室开放基金(2014CL15);新能源电力系统国家重点实验室开放课题(LAPS15001)
更新日期/Last Update: 2015-11-26