[1]石晓灏,张治国.生物力学在医学与健康保障中的应用[J].常州大学学报(自然科学版),2013,(01):15-19.[doi:10.3969/j.issn.2095-0411.2013.01.003]
 SHI Xiao-hao,ZHANG Zhi-guo.Biomechanics and its Applications in Medicine and Healthcare[J].Journal of Changzhou University(Natural Science Edition),2013,(01):15-19.[doi:10.3969/j.issn.2095-0411.2013.01.003]
点击复制

生物力学在医学与健康保障中的应用()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
期数:
2013年01期
页码:
15-19
栏目:
生物医学工程
出版日期:
2013-01-01

文章信息/Info

Title:
Biomechanics and its Applications in Medicine and Healthcare
作者:
石晓灏张治国
常州大学 生物医学工程与健康科学研究院,江苏 常州 213164
Author(s):
SHI Xiao-hao ZHANG Zhi-guo
School of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164, China
关键词:
生物力学 心血管病 骨科病 牙齿与口腔保健 康复工程
Keywords:
biomechanics cardiovascular disease orthopedic disease dental and oral healthcare rehabilitation engineering
分类号:
TK 229.8
DOI:
10.3969/j.issn.2095-0411.2013.01.003
文献标志码:
A
摘要:
生物力学是研究生命现象中的力学行为,以及力学行为和因素对生命现象的影响的一门综合交叉学科。生物力学的研究不仅对于揭示生命活动的本质规律有十分重要的科学意义,而且在医学与健康保障的诸多领域具有广泛的应用价值。本文将简要介绍生物力学在研究人类重要疾病的机理和防治方面的应用,包括心血管疾病、骨科疾病、牙齿与口腔保健和康复工程等。生物力学在这些领域的应用为治疗疾病和保障健康带来了重大的进步。
Abstract:
Biomechanics is an integral and interdisciplinary scientific research that studies mechanical principles as well as mechanically induced phenomena in life activities. Biomechanics is not only extremely important in disclosing the fundamental laws of life, but also has great value of application in a wide range of fields in medicine and healthcare. This article will briefly describe some cases of biomechanics applications in the treatment and prevention of important human diseases such as cardiovascular disease, orthopedic disease, dental healthcare and rehabilitation engineering. Biomechanics application in these fields has brought great advances for both treating disease and assuring health.

参考文献/References:

[1] Caro C G, Pedley R J, Schroter R C, et al. The mechanics of the circulation[M]. New York: Oxford University Press,1978.
[2] Taylor C A, Hughes T J R, Zarins C K. Finite element modeling of blood flow in arteries[J]. Computer Methods in Applied Mechanics and Engineering,1998,158:156-196.
[3] Botnar R, Rappitsch G, Scheidegger M B. Hemodynamics in the carotid artery bifurcation: a comparison between numerical simulations and in vitro MRI measurements[J]. Journal of Biomechanics,2000,33:137-144.
[4] Fry D L. Acute vascular endothelial changes associated with increased blood velocity gradients[J]. Circulation Research,1968,22: 165-197.
[5] Birchall D, Zaman A, Hacker J, et al. Analysis of haemodynamic disturbance in the atherosclerotic carotid artery using computational fluid dynamics[J]. Eur Radiol, 2006,10: 1-10.
[6] 乔爱科,刘有军,伍时桂.弯曲动脉的血流动力学数值分析[J].计算力学学报,2003,20(2):155-163.
[7] Qiao A K, Guo X L, Wu S G, et al. Numerical study of nonlinear pulsatile flow in S-shaped curved arteries[J]. Medical Engineering & Physics, 2004,26(7): 545-552.
[8] Zhang Z G,Fan Y B,Deng X Y. Oxygen transfer in human carotid artery bifurcation[J]. Acta Mechanica Sinica,2007,23(3):305-209.
[9] 黄伟,刘有军,主海文,等.腹主动脉的血流动力学数值模拟[J].医用生物力学,2003,18(Supp):69-70.
[10] He X, Ku D N. Pulsatile flow in the human left coronary artery bifurcation: Average condition[J]. ASME J Biomech Eng, 1996,118:74-82.
[11] Qiao A, Liu Y, Li S, et al. Numerical simulation of physiological blood flow in 2-way coronary artery bypass grafts[J]. J Biol Phys,2005,31(2): 161-182.
[12] Longest P W, Kleinstreuer C. Particle-hemodynamics modeling of the distal end-to-side femoral bypass: effects of graft caliber and graft-end cut[J]. Med Eng Phys,2003,25: 843-858.
[13] 乔爱科,刘有军.面向医学应用的血流动力学仿真(II):动脉病变及治疗的血流动力学仿真[J/OL].
[2007-03-08].http://www.paper.edu.cn/releasepaper/content/200703-95.
[14] Zhang Z G, Zhang X W, Liu Y X. Effects of fluid recirculation on mass transfer from the arterial surface to flowing blood[J]. Acta Mech Sin,2012,28(3):904-910.
[15] Qiao A K, Liu Y J, Li S Y, et al. Numerical simulation of physiological blood flow in 2-way coronary artery bypass grafts[J]. J Biol Phys,2005,31(2): 161-182.
[16] Burleson A C. Identification of quantifiable hemodynamic factors in the assessment of cerobral aneurysm behavior[J]. Thromb Haemost, 1996, 76(1): 118 - 123.
[17] Parodi J C, Palmaz J C, Barone H D. Transfemoral intraluminal graft implantation for abdominal aortic aneurysms[J]. Ann Vasc Surg,1991,5:491-499.
[18] Beller C J, Labrosse M R, Hagl S. Increased aortic wall stress in aortic insufficiency: clinical data and computer model[J]. Eur J Cardiothorac Surg,2005, 27(2):270-275.
[19] Zhang H, Bathe K J. Direct and iterative computing of fluid flows fully coupled with structures[C]. First MIT Conference on Computational Fluid and Solid Mechanics. Massachusetts: [s.n.], 2001: 1440-1443.
[20] Rugonyi S, Bathe K J. On the finite element analysis of fluid flows fully coupled with structural interactions[J]. Computer Models and Methods in Applied Sciences,2001,2(2):195-212.
[21] Masahiro W, Teruo M. Computational simulation of flow in a dissecting aortic aneurysm reconstructed from CT images[C]. 6th International Symposium on Computer Methods in Biomechncs & Biomedical Engineering.Madrid, Spain:[s.n.],2004.
[22] Liou T M, Chang W C, Liao C C. LDV measurements in lateral model aneurysms of various sizes[J]. Experiments in Fluids,1997, 23:317-324.
[23] Liou T M, Liao C C. Flow fields in lateral aneurysm arising from parent vessels with different curvatures using PTV[J]. Experiments in Fluids, 1997, 23:288-298.
[24] Taylor C A, Draney M T, Ku J P. Predictive medicine: computational techniques in therapeutic decision making[J]. Computer aided surgery, 1999, 4(5): 231-247.
[25] Fan Y,Xiu K, Duan H, et al. Biomechanical and histological evaluation of the application of biodegradable poly-l-lactic cushion to the plate internal fixation for bone fracture healing[J]. Clinical Biomechanics, 2008, 23, Supplement 1: S7-S16.
[26] Bae J Y, Farooque U, Lee K-w, et al. Development of hip joint prostheses with modular stems[J]. Computer-Aided Design, 2011, 43(9): 1173-1180.
[27] Baggi L, Cappelloni I, Maceri F,et al. Stress-based performance evaluation of osseointegrated dental implants by finite-element simulation[J]. Simulation Modelling Practice and Theory, 2008, 16(8): 971-987.
[28] Lee W C, Zhang M, Boone D A,et al. Finite-element analysis to determine effect of monolimb flexibility on structural strength and interaction between residual limb and prosthetic socket[J]. J Rehabil Res Dev, 2004, 41(6A):775-786.
[29] Lee W C C, Zhang M. Design of monolimb using finite element modelling and statistics-based Taguchi method[J]. Clinical biomechanics(Bristol, Avon), 2005,20(7): 759-766.
[30] Mak A F, Zhang M, Boone D A.State-of-the-art research in lower-limb prosthetic biomechanics-socket interface: a review[J]. J Rehabil Res Dev, 2001, 38(2): 161-174.
[31] Lee W C, Zhang M, Mak A F. Regional differences in pain threshold and tolerance of the transtibial residual limb: Including the effects of age and interface material[J]. Archives of physical medicine and rehabilitation, 2005,86(4): 641-649.
[32] Zhang M, Mak A F T, Roberts V C. Finite element modelling of a residual lower-limb in a prosthetic socket: a survey of the development in the first decade[J]. Medical Engineering & Physics, 1998,20(5):360-373.

备注/Memo

备注/Memo:
作者简介:石晓灏(1984—),女,陕西西安人,博士,讲师; 通讯联系人:张治国。
更新日期/Last Update: 2013-01-01