[1]曹剑瑜,陈利娟,赵卫芳,等.牺牲模板法制高比电容的氮修饰石墨烯及其电化学性能研究[J].常州大学学报(自然科学版),2015,(03):56-60.[doi:10.3969/j.issn.2095-0411.2015.03.011]
 CAO Jianyu,CHEN Lijuan,ZHAO Weifang,et al.Preparation of Nitrogen-Modified Graphene of High Specific Capacitance by Sacrificial Template Method and Its Electrochemical Performances[J].Journal of Changzhou University(Natural Science Edition),2015,(03):56-60.[doi:10.3969/j.issn.2095-0411.2015.03.011]
点击复制

牺牲模板法制高比电容的氮修饰石墨烯及其电化学性能研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
期数:
2015年03期
页码:
56-60
栏目:
化学化工
出版日期:
2015-07-25

文章信息/Info

Title:
Preparation of Nitrogen-Modified Graphene of High Specific Capacitance by Sacrificial Template Method and Its Electrochemical Performances
作者:
曹剑瑜12陈利娟1赵卫芳1胡玥1朱振涛1许娟12陈智栋12
1. 常州大学 石油化工学院, 江苏 常州 213164; 2. 江苏省太阳能电池与储能技术重点实验室, 江苏 常州 213164
Author(s):
CAO Jianyu12 CHEN Lijuan1 ZHAO Weifang1 HU Yue1 ZHU Zhentao1 XU Juan12CHEN Zhidong12
1. School of Petrochemical Engineering, Changzhou University, Changzhou 213164,China;2.Jiangsu Key Laboratory for Solar Cells and Energy Storage Technology, Changzhou 213164,China
关键词:
石墨烯超级电容器牺牲模板电化学容量
Keywords:
Graphene supercapacitor sacrificial template electrochemical capacitance
分类号:
O 646
DOI:
10.3969/j.issn.2095-0411.2015.03.011
文献标志码:
A
摘要:
采用牺牲模板法经高温热解制备了氮修饰的石墨烯。BET分析结果显示,氮修饰石墨烯具有大的比表面积和明显的介孔特征。Raman光谱分析揭示,热解制备的氮修饰石墨烯具有高的石墨化程度。电化学研究结果显示氮修饰石墨烯具有高的超级电容性能,在0.5〖KG3x〗A·g.-1.的电流密度下的比电容达到190〖KG3x〗F·g.-1.。经1 000圈充放电循环后,氮修饰石墨烯的比容量还能保持原来的88%。
Abstract:
Nitrogen-modified graphenes (NGs) were prepared via high temperature pyrolysis by sacrificial template method. The BET analysis indicates that NGs possess a large specific surface area and significant mesoporous characteristics. Raman results reveal that NGs have a high degree of graphitization. The electrochemical results show that NGs present a high supercapacitor performance. The specific capacitance can reach 190〖KG3x〗F·g-1 at a current density of 05〖KG3x〗A·g-1, and the retention ratio of specific capacitance for NGs can maintain 88% after 1 000 galvanostatic charge-discharge cycles at 0.5〖KG3x〗A·g-1.

参考文献/References:

[1]WANG G, ZHANG L, ZHANG J. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews, 2012, 41(2);797-828.
[2] ZHONG M, SONG Y, LI Yongfeng, et al. Effect of reduced graphene oxide on the properties of an activated carbon cloth/polyaniline flexible electrode for supercapacitor application[J]. Journal of Power Sources, 2012, 217: 6-12.
[3] 苏鹏, 郭慧林, 彭三, 等. 氮掺杂石墨烯的制备及其超级电容性能[J]. 物理化学学报, 2012, 28(11):2745-2753.
[4]WANG Shuangyin, Dryfe Robert A W. Graphene oxide-assisted deposition of carbon nanotubes on carbon cloth as advanced binder-free electrodes for flexible supercapacitors[J]. Journal of Material Chemistry A, 2013: 5279-5283.
[5]ZHU Yanwu, Murali S, Stoller MerylD, et al. Carbon-based supercapacitors produced by activation of graphene[J]. Science, 2011, 332: 1537-1541.
[6] 周慧, 王进, 许娟, 等. LiFePO4/石墨烯复合材料的电化学性能比较研究[J]. 常州大学学报(自然科学版), 2013, 25: 76-81.
[7] AllenMatther J, Tung Vincent C, Kaner Richard B. Honeycomb carbon: a review of graphene[J]. Chemical Reviews, 2010, 110(1): 132-145.
[8] SUN Y, WU Q, SHI G. Supercapacitors based on self-assembled grapheme organogel[J]. Physical Chemistry Chemical Physics, 2011, 13:17249-17254.
[9] LIU F, SONG S, XUE D, et al. Folded structured graphene paper for high performance electrode materials[J], Advanced Materials, 2012, 24:1089-1094.
[10] SHENG Zhenhuan, SHAO L, CHEN Jingjing, et al. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis[J]. ACS Nano, 2011, 5(6):4350-4358.
[11] YAN J, XIAO Y, NING G, et al. Facile and rapid synthesis of highly crumpled graphene sheets as high- performance electrodes for supercapacitors[J]. RSC Advances, 2013, 3 :2566-2571.
[12] WEN X, Zhang D, YAN T, et al. Three-dimensional graphene-based hierarchically porous carbon composites prepared by a dual-template strategy for capacitive deionization[J]. Journal of Materials Chemistry A, 2013, 1:12334-12344.
[13]WANG G, Yang J, Park J, et al. Facile synthesis and characterization of graphene nanosheets[J]. The Journal of Physical Chemistry C, 2008, 112(22):8192-8195.
[14]NIKOLIC G, ZLATKOVIC S, CAKIC M, et al. Fast fourier transform IR characterization of epoxy GY systems crosslinked with aliphatic and cycloaliphatic EH polyamine adducts[J]. Sensors, 2010, 10:684-696.
[15]陈智栋, 高兰, 曹剑瑜, 等. 超级电容器电极材料γ-MnO2 纳米管的制备及性能[J]. 化学学报, 2011, 69:503-507.

相似文献/References:

[1]谢爱娟,周 民,罗士平,等.基于聚邻苯二胺/石墨烯修饰电极的肠道病毒71型(EV71)电化学免疫传感器[J].常州大学学报(自然科学版),2013,(01):71.[doi:10.3969/j.issn.2095-0411.2013.01.015]
 XIE Ai-juan,ZHOU Min,LUO Shi-ping,et al.Electrochemical Immunosensor for Detection of Human Enterovirus 71 Based on Graphene-Poly(o-Phenylenediamine)Modified Electrode[J].Journal of Changzhou University(Natural Science Edition),2013,(03):71.[doi:10.3969/j.issn.2095-0411.2013.01.015]
[2]秦勇,赵璟悠,晁磊,等.石墨烯负载钴镍双金属氢氧化物纳米线的制备与性能研究[J].常州大学学报(自然科学版),2015,(04):1.[doi:10.3969/j.issn.2095-0411.2015.04.001]
 QIN Yong,ZHAO Jingyou,CHAO Lei,et al.Preparation and Performance of Cobalt-Nickel Double Hydroxide Nanowire-Decorated Graphene Composite[J].Journal of Changzhou University(Natural Science Edition),2015,(03):1.[doi:10.3969/j.issn.2095-0411.2015.04.001]

备注/Memo

备注/Memo:
江苏省科技支撑计划基金(BE201113);江苏省自然科学基金(BK2012591);江苏省普通高校研究生科研创新计划项目(CXZZ13_0730)
更新日期/Last Update: 2015-11-26