[1]秦勇,赵璟悠,晁磊,等.石墨烯负载钴镍双金属氢氧化物纳米线的制备与性能研究[J].常州大学学报(自然科学版),2015,(04):1-6.[doi:10.3969/j.issn.2095-0411.2015.04.001]
 QIN Yong,ZHAO Jingyou,CHAO Lei,et al.Preparation and Performance of Cobalt-Nickel Double Hydroxide Nanowire-Decorated Graphene Composite[J].Journal of Changzhou University(Natural Science Edition),2015,(04):1-6.[doi:10.3969/j.issn.2095-0411.2015.04.001]
点击复制

石墨烯负载钴镍双金属氢氧化物纳米线的制备与性能研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
期数:
2015年04期
页码:
1-6
栏目:
材料科学与工程
出版日期:
2015-11-15

文章信息/Info

Title:
Preparation and Performance of Cobalt-Nickel Double Hydroxide Nanowire-Decorated Graphene Composite
作者:
秦勇12赵璟悠3晁磊12王成12储富强12孔泳12陶永新12
1. 常州大学 石油化工学院,江苏 常州 213164; 2. 江苏省绿色催化材料与技术重点实验室,江苏 常州 213164; 3. 江苏省苏州市公安局刑事警察支队,江苏 苏州 215000
Author(s):
QIN Yong12 ZHAO Jingyou3CHAO Lei12 WANG Cheng12 CHU Fuqiang12 KONG Yong12 TAO Yongxin12
1. School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; 2. Jiangsu Key Laboratory of Advanced Catalytic Material and Technology, Changzhou University, Changzhou 213164, China; 3. Criminal Police Detachment of Suzhou Public Security Bereau, Suzhou 215000, China
关键词:
石墨烯 电剥离 双金属氢氧化物 纳米线 超级电容器
Keywords:
graphene electrochemical exfoliation double metal hydroxide nanowire supercapacitor
分类号:
TK 8
DOI:
10.3969/j.issn.2095-0411.2015.04.001
文献标志码:
A
摘要:
在能源转化与存储领域,寻找优异的电极材料是目前的研究热点。以电剥离石墨烯为载体,硝酸钴、硝酸镍为原料,通过水热自组装制备了电剥离石墨烯负载钴镍双金属氢氧化物纳米线复合材料(CoNi-DHNW/EG)。以X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)等对材料的结构和形貌进行了表征。结果表明,钴镍双金属氢氧化物以纳米线的形式均匀分布在石墨烯上,其直径约为20 nm。将CoNi-DHNW/EG用作超级电容器的电极材料,考察了其在电存储方面的应用性能,发现当钴镍双金属氢氧化物与电剥离石墨烯的质量比为7:3,Co(OH)2和Ni(OH)2的物质的量比为2:1,水热温度为120 ℃时,得到的Co0.66Ni0.33-DHNW/EG复合材料具有最佳的电存储性能,其比电容达到225 F·g-1。该复合材料制备简单、原料易得、对环境无害,因此有望在能源存储与转化领域发挥重要作用。
Abstract:
Currently, seeking excellent electrode materials for energy storage and conversion is a hot researching topic. Cobalt and nickel double metal hydroxide nanowire-decorated electrochemical exfoliated graphene composite(CoNi-DHNW/EG)was prepared through hydrothermal self-assemble strategy using electrochemical exfoliated graphene as support,and cobalt nickel nitrate salts as raw materials. X-ray diffraction(XRD), scanning electron microscopy(SEM)and transmission electron microscopy(TEM)were used to characterize the structure and morphology of the composites. The results show that CoNi-DHNW is well distributed on graphene sheets with a diameter of 20 nm. The electric storage performance of CoNi-DHNW/EG was then explored. It is found that when the mass ratio of the CoNi double hydroxides to EG is 7:3, the molar ratio of Co(OH)2 to Ni(OH)2 is 2:1, hydrothermal temperature is 120 ℃,Co0.66Ni0.33DHNW/EG exhibits the optimum specific capacitance up to 225 F·g-1. The composite may be a promising material for the storage and conversion due to its facile fabrication process, low-cost raw materials, and environmental friendliness.

参考文献/References:

[1]周鹏伟, 李宝华, 康飞宇, 等. 椰壳活性炭基超级电容器的研制与开发[J].新型炭材料, 2006, 21(2):125-131.
[2]段晓飞, 尹明, 王鸿麟. 碳凝胶超级电容器的应用技术[J].电子元器件应用, 2003, 5(7):7-10.
[3]吴锋, 徐斌. 碳纳米管在超级电容器中的应用研究进展[J].新型炭材料, 2006, 21(2):176-184.
[4]吴洪鹏. 石墨烯的制备及在超级电容器中的应用[D]. 北京: 北京交通大学, 2012.
[5]SHAO Y, EL-KADY M F, WANG L J, et al. Graphene-based materials for flexible supercapacitors[J].Chemical Society Reviews, 2015, 44(11): 3639-3665.
[6]LU Y, HUANG Y, ZHANG M, et al. Nitrogen-doped graphene materials for supercapacitor applications[J].Journal of nanoscience and nanotechnology, 2014, 14(2): 1134-1144.
[7]ZHANG X, ZHANG H, LI C, et al. Recent advances in porous graphene materials for supercapacitor applications[J].RSC Advances, 2014, 4: 45862-45884.
[8]高海瑞. 几种 RuO2 纳米材料的制备及其超级电容器性能研究[D]. 武汉:华中师范大学, 2013.
[9]汪形艳, 王先友, 黄伟国. 超级电容器电极材料研究[J].电池, 2004(3):192-193.

[10]万厚钊, 缪灵, 徐葵, 等. Mn02 基超级电容器电极材料[J].化工学报, 2013, 64(3): 801-813.

[11]袁安保, 章庆林. 超级电容器材料纳米 Co3O4 的固相法制备及电化学性能[J].功能材料与器件学报, 2007, 13(1): 1-6.

[12]何光裕, 王亮, 王林, 等. Co3O4/石墨烯复合物的水热合成及其超级电容器性能[J].化工新型材料, 2012, 40(11): 23-25.

[13]孟祥云. 超级电容器 NiO 及其复合材料的制备与电化学性能[D]. 湘潭:湘潭大学, 2008.

[14]张世品. 电沉积制备 Ni(OH)2 正极材料及其在超级电容器中的应用[D]. 秦皇岛:燕山大学, 2008.

[15]李晶, 赖延清, 李颉, 等. 导电聚苯胺电极材料在超级电容器中的应用及研究进展[J].材料导报, 2007, 20(12): 20-23.

[16]王杰, 徐友龙, 孙孝飞, 等. 多次聚合法制备多孔聚吡咯厚膜及其电化学容量性能[J].物理化学学报, 2007, 23(6): 877-882.

[17]袁美蓉, 宋宇, 徐永进. 导电聚噻吩作为超级电容器电极材料的研究进展[J].材料导报, 2014, 28(11): 10-13.

[18]WANG Y, SHI Z, HUANG Y, et al. Supercapacitor devices based on graphene materials[J].The Journal of Physical Chemistry C, 2009, 113(30): 13103-13107.

[19]YAN J, FAN Z, WEI T, et al. Fast and reversible surface redox reaction of graphene-MnO 2 composites as supercapacitor electrodes[J].Carbon, 2010, 48(13): 3825-3833.
[20]RAMADOSS A, KIM S J. Facile preparation and electrochemical characterization of graphene/ZnO nanocomposite for supercapacitor applications[J].Materials Chemistry and Physics, 2013, 140(1): 405-411.
[21]LIM S P, HUANG N M, LIM H N. Solvothermal synthesis of SnO2/graphene nanocomposites for supercapacitor application[J].Ceramics International, 2013, 39(6): 6647-6655.
[22]ZHANG K, ZHANG L L, ZHAO X S, et al. Graphene/polyaniline nanofiber composites as supercapacitor electrodes[J].Chemistry of Materials, 2010, 22(4): 1392-1401.
[23]WANG Y, YANG W, ZHANG S, et al. Synthesis and electrochemical characterization of Co-Al layered double hydroxides[J].Journal of The Electrochemical Society, 2005, 152(11): A2130-A2137.
[24]GAO Z, WANG J, LI Z, et al. Graphene nanosheet/Ni2+/Al3+ layered double-hydroxide composite as a novel electrode for a supercapacitor[J].Chemistry of Materials, 2011, 23(15): 3509-3516.
[25]WANG X, ZHI L, MULLEN K. Transparent, conductive graphene electrodes for dye-sensitized solar cells[J].Nano letters, 2008, 8(1): 323-327.
[26]BERNARD M C, CORTES R, KEDDAM M, et al. Structural defects and electrochemical reactivity of β-Ni(OH)2[J].Journal of Power Sources, 1996, 63(2): 247-254.
[27]GUPTA V, KUSAHARA T, TOYAMA H, et al. Potentiostatically deposited nanostructured α-Co(OH)2: A high performance electrode material for redox-capacitors[J].Electrochemistry Communications, 2007, 9(9): 2315-2319.
[28]GUPTA V, GUPTA S, MIURA N. Potentiostatically deposited nanostructured CoxNi1-x layered double hydroxides as electrode materials for redox-supercapacitors[J].Journal of Power Sources, 2008, 175(1): 680-685.

相似文献/References:

[1]谢爱娟,周 民,罗士平,等.基于聚邻苯二胺/石墨烯修饰电极的肠道病毒71型(EV71)电化学免疫传感器[J].常州大学学报(自然科学版),2013,(01):71.[doi:10.3969/j.issn.2095-0411.2013.01.015]
 XIE Ai-juan,ZHOU Min,LUO Shi-ping,et al.Electrochemical Immunosensor for Detection of Human Enterovirus 71 Based on Graphene-Poly(o-Phenylenediamine)Modified Electrode[J].Journal of Changzhou University(Natural Science Edition),2013,(04):71.[doi:10.3969/j.issn.2095-0411.2013.01.015]
[2]曹剑瑜,陈利娟,赵卫芳,等.牺牲模板法制高比电容的氮修饰石墨烯及其电化学性能研究[J].常州大学学报(自然科学版),2015,(03):56.[doi:10.3969/j.issn.2095-0411.2015.03.011]
 CAO Jianyu,CHEN Lijuan,ZHAO Weifang,et al.Preparation of Nitrogen-Modified Graphene of High Specific Capacitance by Sacrificial Template Method and Its Electrochemical Performances[J].Journal of Changzhou University(Natural Science Edition),2015,(04):56.[doi:10.3969/j.issn.2095-0411.2015.03.011]

备注/Memo

备注/Memo:
收稿日期:2015-08-06。作者简介:秦勇(1976—),男,湖北荆州人,博士,副教授,主要从事石墨烯基复合材料的研究与开发。
更新日期/Last Update: 2015-10-20