[1]夏 群,徐晓岩,朱平华.气凝胶复合SCC隧道火灾剥落与强度退化研究[J].常州大学学报(自然科学版),2017,(06):63.[doi:10.3969/j.issn.2095-0411.2017.06.009]
 XIA Qun,XU Xiaoyan,ZHU Pinghua.Spalling and Strength Degradation of Aerogel Mortar Protected Self-Compacting Concrete Exposed to Tunnel Fire[J].Journal of Changzhou University(Natural Science Edition),2017,(06):63.[doi:10.3969/j.issn.2095-0411.2017.06.009]
点击复制

气凝胶复合SCC隧道火灾剥落与强度退化研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
期数:
2017年06期
页码:
63
栏目:
环境与安全工程
出版日期:
2017-12-10

文章信息/Info

Title:
Spalling and Strength Degradation of Aerogel Mortar Protected Self-Compacting Concrete Exposed to Tunnel Fire
作者:
夏 群 徐晓岩 朱平华
常州大学 环境与安全工程学院,江苏 常州 213164
Author(s):
XIA Qun XU Xiaoyan ZHU Pinghua
School of Environmental & Safety Engineering, Changzhou University, Changzhou 213164, China
关键词:
隧道火灾 气凝胶砂浆涂层 气凝胶复合自密实混凝土 爆裂剥落 强度退化
Keywords:
tunnel fire aerogel mortar coating self-compacting concrete coated with aerogel mortar spalling compressive strength degradation
分类号:
TU 502
DOI:
10.3969/j.issn.2095-0411.2017.06.009
文献标志码:
A
摘要:
开发了硅气凝胶砂浆,用以保护和防止自密实混凝土(SCC)在模拟隧道火灾条件下(1 200 ℃)发生爆裂剥落。首先在气凝胶体积掺量为骨料(气凝胶+砂)体积的60%条件下制备出具有防火涂层潜力的砂浆,然后采用Eurocodes HC火灾升温曲线(目标温度1 200 ℃)和喷淋与自然冷却2种灭火方式,对C40复合(涂层厚度为1~15 mm)与非复合自密实混凝土(未涂层)火灾爆裂剥落与强度退化性能进行对比研究,建立了爆裂剥落时长、强度折减系数与气凝胶涂层厚度之间的关系。结果表明,隧道火灾下,非复合自密实混凝土爆裂剥落时长为107 min,而复合自密实混凝土爆裂剥落时长均延长13~93 min,爆裂剥落时长与气凝胶涂层厚度呈二次抛物线关系; 自然冷却与喷淋冷却灭火方式下,非复合自密实混凝土强度折减系数为47.7%与29.3%,当涂层厚度为15 mm时,复合自密实混凝土强度折减系数为96.5%与82.6%,随涂层厚度增大,强度折减系数分别呈二次抛物线与线性增长。
Abstract:
Silica aerogel based mortar was developed with a purpose to protect self-compacting concrete(SCC)from an explosion to high temperature atmosphere(1 200 ℃), which was experimentally simulated to a tunnel fire condition. With a protection of such silica aerogel motar, the explosive spalling and strength degradation of self-compacting concrete(SCC)were systematically evaluated. For the preparation of aerogel mortar, the granular silica aerogel was regarded as one portion of aggregates, which is about 60% of the total aggregate volume(aerogel + sand), the mortar was then used as insulation layer and decorated on the surface of C40 self-compacting concrete with the thickness of 1-15 mm. The specimens with or without aerogel mortar protection were heated up to 1 200 ℃ following the Eurocodes HC time-temperature curve until an explosively spalling occurred, and then the samples were cooled down in following 2 routes: natural cooling and spray cooling. The results show that the spalling happened at 107 min for SCC specimen without any protection. In contrast, with an aerogel mortar protection, the spalling was extended by 13 to 93 min, the thickness of the mortar and the spalling time follows a quadratic parabolic equation. Cooling under natural or spray forced conditions, the compressive strength reduction coefficients of the non-composite SCC specimen are 47.7% and 29.3% while the one with 15 mm mortar protection are 96.5% and 82.6%.With an increase of coating thickness, the compressive strength reduction coefficients of the SCC specimen under natural cooling and spray forced cooling follow quadratic parabola and linear relations respectively.

参考文献/References:

[1] 王梦恕. 中国铁路、隧道与地下空间发展概况[J]. 隧道建设,2010,30(4):351-364.
[2]《中国公路学报》编辑部. 中国隧道工程学术研究综述[J]. 中国公路学报,2015,28(5):1-65.
[3]SHY B. Overview of traffic safety aspects and design in road tunnels[J]. IATSS Research, 2016, 40(1): 35-46.
[4]向青松. 复合型隧道防火涂料及性能研究[D]. 长沙:湖南大学,2013.
[5]VLADIMíR J, TOMá M, JI(ˇoverR)í K, et al. Fire-resistant structures for tunnels using light concrete II[J]. Solid State Phenomena, 2016, 4251(249): 33-40.
[6]MITSUO O, SHINYA U, TOSHIRO K, et al. Study of mechanisms of explosive spalling in high-strength concrete at high temperatures using acoustic emission[J]. Construction and Building Materials, 2012, 27(3): 621-628.
[7]ARABI N S A Q, SLEIMAN M A. Effect of fibre content and specimen shape on residual strength of polypropylene fibre self-compacting concrete exposed to elevated temperatures[J]. Journal of King Saud University-Engineering Sciences, 2012, 26: 33-39.
[8]FIDALGO A, FARINHA J P S, MARTINHO J M G, et al. Flexible hybrid aerogels prepared under subcritical conditions[J]. Journal of Materials Chemistry A, 2013, 1(39): 12044-12052.
[9]AEGERTER M A, LEVENTIS N, KOEBEL M M. Aerogels handbook[M]. Beijing: China Atomic Energy Press, 2014.
[10] KIM S, SEO J, CHA J. Chemical retreating for gel-typed agrogel and insulation performance of cement containing aerogel[J]. Construction and Building Materials, 2013(40): 501-505.
[11]GAO T, JELLE B P, GUSTAVSEN A, et al. Aerogel-incorporated concrete:an experimental study[J]. Construction and Building Materials, 2014, 52(2): 130-136.
[12]NG S, JELLE B P, ZHEN Y P, et al. Effect of storage and curing conditions at elevated temperatures on aerogel-incorporated mortar samples based on UHPC recipe[J]. Construction and Building Materials, 2016,106: 640-649.
[13]NG S, SANDBERG L I C, JELLE B P. Insulating and strength properties of an aerogel-incorporated mortar based on UHPC formulations[J]. Key Engineering Materials, 2015, 629/630: 43-48.
[14]郭金涛. 硅气凝胶/玻化微珠复合保温砂浆研究[D]. 西安:长安大学,2011.
[15]范树景,王培铭. 聚丙烯纤维增强玻化微珠保温砂浆的干缩开裂性能[J]. 建筑材料学报,2017(1):118-123.
[16]孙铭. 面向PC板生产线的混凝土搅拌特性分析[D]. 沈阳:沈阳建筑大学,2014.
[17]朋改非,杨娟,石云兴,等. 超高性能混凝土抗高温爆裂性能试验研究[J]. 建筑材料学报,2017,20(2):229-233,238.
[18]徐海珣. 硅基复合气凝胶的制备及其应用基础研究[D]. 大连:大连理工大学,2011.
[19]朱合华,闫治国,梁利,等. 不同火灾升温曲线下隧道内温度场分布规律研究[J]. 地下空间与工程学报,2012(1):1595-1600.

相似文献/References:

[1]陈春红,朱平华,陈世洲.隧道火灾下气凝胶复合混凝土强度经时变化[J].常州大学学报(自然科学版),2020,32(03):86.[doi:10.3969/j.issn.2095-0411.2020.03.012]
 CHEN Chunhong,ZHU Pinghua,CHEN Shizhou.Study on Strength Variation of Aerogel Composite Concrete Exposed to Tunnel Fire[J].Journal of Changzhou University(Natural Science Edition),2020,32(06):86.[doi:10.3969/j.issn.2095-0411.2020.03.012]

备注/Memo

备注/Memo:
收稿日期:2017-06-12。
基金项目:国家自然科学基金资助项目(51678080,51678081)。
作者简介:夏群(1970-),女,江苏常州人,硕士,高级工程师,主要从事混凝土材料研究。
更新日期/Last Update: 1900-01-01