[1]刘文君,任玉荣.Co3O4/Co-NC电催化剂的制备及锌空气电池性能[J].常州大学学报(自然科学版),2024,36(05):18-29.[doi:10.3969/j.issn.2095-0411.2024.05.003]
 LIU Wenjun,REN Yurong.Preparation of Co3O4/Co-NC electrocatalyst and performance in rechargeable Zn-air batteries[J].Journal of Changzhou University(Natural Science Edition),2024,36(05):18-29.[doi:10.3969/j.issn.2095-0411.2024.05.003]
点击复制

Co3O4/Co-NC电催化剂的制备及锌空气电池性能()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第36卷
期数:
2024年05期
页码:
18-29
栏目:
材料科学与工程:能源存储与转化
出版日期:
2024-09-28

文章信息/Info

Title:
Preparation of Co3O4/Co-NC electrocatalyst and performance in rechargeable Zn-air batteries
文章编号:
2095-0411(2024)05-0018-12
作者:
刘文君1 任玉荣12
1.常州大学 材料科学与工程学院, 江苏 常州 213164; 2.江苏省新能源汽车动力电池制造技术工程研究中心(常州大学), 江苏 常州 213164
Author(s):
LIU Wenjun1 REN Yurong12
1.School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China; 2.Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou University, Changzhou 213164, China
关键词:
Co3O4/Co-NC 氧还原反应 析氧反应 锌空气电池 双功能电催化剂
Keywords:
Co3O4/Co-NC oxygen reduction reaction oxygen evolution reaction Zn-air batteries bifunctional electrocatalyst
分类号:
O 612.8
DOI:
10.3969/j.issn.2095-0411.2024.05.003
文献标志码:
A
摘要:
以六水合硝酸钴和2-甲基咪唑为原料合成Co基金属有机框架(ZIF-67),通过对ZIF-67进行退火,制备氮掺杂石墨化多孔碳纳米框架(NC)包裹的Co3O4/Co纳米颗粒(Co3O4/Co-NC),作为一种双功能电催化剂,用于锌空气电池性能研究,且结构中包含三维多孔结构。结果表明,这种独特结构能提供有效的电荷传输环境,此外,通过Co—N共价键,纳米颗粒与碳框架之间的强结合力阻止纳米颗粒从电催化剂中损失,从而彰显出良好的双功能活性。在浓度为0.1 mol/L的KOH溶液中,氧还原反应(ORR)的半波电位为0.844 V,析氧反应(OER)在电流密度为10 mA/cm2时的过电位为424 mV。Co3O4/Co-NC催化剂驱动的锌空气电池表现出良好的充放电性能,功率密度为116.69 mW/cm2,且具有51 h的循环稳定性,在下一代可充电电池的实际应用中拥有良好潜力。
Abstract:
Co3O4/Co nanoparticles coated with nitrogen-doped graphitized porous carbon frameworks(Co3O4/Co-NC)were synthesized via annealing Co-based metal-organic-frameworks(ZIF-67)using cobalt nitrate hexahydrate and 2-methylimidazole as raw materials. The bifunctional electrocatalyst consisting of Co3O4/Co-NC with three-dimensional porous structure was investigated for Zn-air batteries. It was found that this unique structure offered an efficient charge transport environment. In addition, the strong binding forces between nanoparticles and carbon frameworks through Co—N covalent bonds prevented the loss of nanoparticles from the electrocatalysts, thus demonstrating good bifunctional electrocatalytic activity. Co3O4/Co-NC exhibited good oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)performances with a half-wave potential of 0.844 V and the low overpotential of 424 mV at 10 mA/cm2 in 0.1 mol/L KOH solution. A Zn-air battery driven by the Co3O4/Co-NC catalyst exhibited good charge/discharge performance, with a power density of 116.69 mW/cm2, and long-term cycling stability for 51 h, possessing good potential for practical application in next-generation rechargeable batteries.

参考文献/References:

[1] WEI C X, ZHANG Q G, WANG Z, et al. Recent advances in MXene-based aerogels: fabrication, performance and application[J]. Advanced Functional Materials, 2023, 33(9): 2211889.
[2] ZHONG X W, ZHENG Z Y, XU J H, et al. Flexible zinc-air batteries with ampere-hour capacities and wide-temperature adaptabilities[J]. Advanced Materials, 2023, 35(13): e2209980.
[3] SHU X X, CHEN Q W, YANG M M, et al. Tuning co-catalytic sites in hierarchical porous N-doped carbon for high-performance rechargeable and flexible Zn-air battery[J]. Advanced Energy Materials, 2023, 13(1): 2202871.
[4] LIU W J, RAO D W, BAO J, et al.Strong coupled spinel oxide with N-rGO for high-efficiency ORR/OER bifunctional electrocatalyst of Zn-air batteries[J]. Journal of Energy Chemistry, 2021, 57: 428-435.
[5] CHEN X, LIU B, ZHONG C, et al. Ultrathin Co3O4 layers with large contact area on carbon fibers as high-performance electrode for flexible zinc-air battery integrated with flexible display[J]. Advanced Energy Materials, 2017, 7(18): 1700779.
[6] WANG Z J, LI B, GE X M, et al. Co@Co3O4@PPD Core@bishell nanoparticle-based composite as an efficient electrocatalyst for oxygen reduction reaction[J]. Small, 2016, 12(19): 2580-2587.
[7] ZHANG G Q, XIA B Y, WANG X, et al. Strongly coupled NiCo2O4-rGO hybrid nanosheets as a methanol-tolerant electrocatalyst for the oxygen reduction reaction[J]. Advanced Materials, 2014, 26(15): 2408-2412.
[8] AIJAZ A, MASA J, RÖSLER C, et al. Co@Co3O4 encapsulated in carbon nanotube-grafted nitrogen-doped carbon polyhedra as an advanced bifunctional oxygen electrode[J]. Angewandte Chemie(International Ed in English), 2016, 55(12): 4087-4091.
[9] HU H, GUAN B Y, XIA B Y, et al. Designed formation of Co3O4/NiCo2O4 double-shelled nanocages with enhanced pseudocapacitive and electrocatalytic properties[J]. Journal of the American Chemical Society, 2015, 137(16): 5590-5595.
[10] GUO C X, ZHENG Y, RAN J R, et al. Engineering high-energy interfacial structures for high-performance oxygen-involving electrocatalysis[J]. Angewandte Chemie(International Ed in English), 2017, 56(29): 8539-8543.
[11] JIANG Z, LI Z P, QIN Z H, et al. LDH nanocages synthesized with MOF templates and their high performance as supercapacitors[J]. Nanoscale, 2013, 5(23): 11770-11775.
[12] WU R B, QIAN X K, RUI X H, et al. Zeolitic imidazolate framework 67-derived high symmetric porous Co3O4 hollow dodecahedra with highly enhanced lithium storage capability[J]. Small, 2014, 10(10): 1932-1938.
[13] HUANG M, MI K, ZHANG J H, et al. MOF-derived bi-metal embedded N-doped carbon polyhedral nanocages with enhanced lithium storage[J]. Journal of Materials Chemistry A, 2017, 5(1): 266-274.
[14] ZHANG L J, SU Z X, JIANG F L, et al. Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions[J]. Nanoscale, 2014, 6(12): 6590-6602.
[15] KANG W P, ZHANG Y, FAN L L, et al. Metal-organic framework derived porous hollow Co3O4/N-C polyhedron composite with excellent energy storage capability[J]. ACS Applied Materials & Interfaces, 2017, 9(12): 10602-10609.
[16] YU M H, WANG Z K, HOU C, et al. Nitrogen-doped Co3O4 mesoporous nanowire arrays as an additive-free air-cathode for flexible solid-state zinc-air batteries[J]. Advanced Materials, 2017, 29(15): 1602868.
[17] LEE D U, LI J D, PARK M G, et al. Self-assembly of spinel nanocrystals into mesoporous spheres as bifunctionally active oxygen reduction and evolution electrocatalysts[J]. ChemSusChem, 2017, 10(10): 2258-2266.
[18] ZHAO S Y, LIU T, DAI Y W, et al. Pt/C as a bifunctional ORR/iodide oxidation reaction(IOR)catalyst for Zn-air batteries with unprecedentedly high energy efficiency of 76.5%[J]. Applied Catalysis B: Environmental, 2023, 320: 121992.

相似文献/References:

[1]何小波,丁露,银凤翔,等.高熵合金在电催化氧还原反应中的应用及发展[J].常州大学学报(自然科学版),2024,36(01):27.[doi:10.3969/j.issn.2095-0411.2024.01.004]
 HE Xiaobo,DING Lu,YIN Fengxiang,et al.Applications and developments of high-entropy alloys toward electrocatalytic oxygen reduction reaction[J].Journal of Changzhou University(Natural Science Edition),2024,36(05):27.[doi:10.3969/j.issn.2095-0411.2024.01.004]

备注/Memo

备注/Memo:
收稿日期: 2024-03-24。
基金项目: 国家自然科学基金资助项目(U22A20420, 22078029); 常州市科技计划资助项目(CJ20220148)。
作者简介: 刘文君(1993—), 女, 江苏扬州人, 博士, 讲师。通信联系人: 任玉荣(1973—), E-mail: ryrchem@cczu.edu.cn
更新日期/Last Update: 1900-01-01