参考文献/References:
[1] LI Q M, ZHANG W B, SHAO W, et al. Numerical modeling of non-uniform corrosion of concrete reinforcement considering calcium leaching and chloride diffusion coupling effect[J]. Corrosion Science, 2024, 237: 112343.
[2] WANG S W, XU C, GU H, et al. An approach for quantifying the influence of seepage dissolution on seismic performance of concrete dams[J]. Computer Modeling in Engineering & Sciences, 2022, 131(1): 97-117.
[3] ZHAO E F, WU C Q, WANG S W, et al. Seepage dissolution effect prediction on aging deformation of concrete dams by coupled chemo-mechanical model[J]. Construction and Building Materials, 2020, 237: 117603.
[4] 王少伟, 包腾飞. 特高混凝土坝变形时变效应特征分析[J]. 常州大学学报(自然科学版), 2018, 30(6): 79-86.
[5] 袁大军, 吴俊, 沈翔, 等. 超高水压越江海长大盾构隧道工程安全[J]. 中国公路学报, 2020, 33(12): 26-45.
[6] 方永浩, 安普斌, 赵伟, 等. 含裂缝水泥基材料的渗透溶蚀及其自愈[J]. 硅酸盐学报, 2008, 36(4): 451-456.
[7] 胡江, 马福恒, 李子阳, 等. 渗漏溶蚀混凝土坝力学性能的空间变异性研究综述[J]. 水利水电科技进展, 2017, 37(4): 87-94.
[8] LI K F, LI L. Crack-altered durability properties and performance of structural concretes[J]. Cement and Concrete Research, 2019, 124: 105811.
[9] 方正青, 汤玉娟, 何绍丽, 等. 粉煤灰对水泥基材料溶蚀性能的影响[J]. 低温建筑技术, 2018, 40(9): 9-13.
[10] 汤玉娟, 左晓宝, 殷光吉, 等. 氯化铵溶蚀下水泥基材料的固-液平衡方程[J]. 硅酸盐通报, 2021, 40(3): 741-749.
[11] 王少伟, 肖焰钰, 朱平华, 等. 高延性水泥基复合材料与既有混凝土结合面的抗溶蚀性[J]. 硅酸盐学报, 2022, 50(10): 2692-2700.
[12] 王少伟, 徐应莉, 朱平华, 等. 溶蚀作用下混凝土层面劈裂抗拉强度试验研究[J]. 水利水电科技进展, 2022, 42(1): 27-32.
[13] AGOSTINI F, LAFHAJ Z, SKOCZYLAS F, et al. Experimental study of accelerated leaching on hollow cylinders of mortar[J]. Cement and Concrete Research, 2007, 37(1): 71-78.
[14] 何绍丽, 左晓宝, 汤玉娟, 等. 腐蚀介质对硬化水泥浆体溶蚀特性的影响[J]. 水利水运工程学报, 2018(3): 113-119.
[15] 孔祥芝, 陈改新, 纪国晋, 等. 硝酸铵溶液加速大坝混凝土溶蚀进程的试验研究[J]. 混凝土, 2017(4): 34-37.
[16] CARDE C, ESCADEILLAS G, FRANCOIS A H. Use of ammonium nitrate solution to simulate and accelerate the leaching of cement pastes due to deionized water[J]. Magazine of Concrete Research, 1997, 49(181): 295-301.
[17] HEUKAMP F H, ULM F J, GERMAINE J T. Mechanical properties of calcium-leached cement pastes[J]. Cement and Concrete Research, 2001, 31(5): 767-774.
[18] WAN K S, LI Y, SUN W. Experimental and modelling research of the accelerated calcium leaching of cement paste in ammonium nitrate solution[J]. Construction and Building Materials, 2013, 40: 832-846.
[19] 王少伟, 肖焰钰, 徐应莉, 等. 化学浸泡法对水泥基材料钙溶蚀的加速效应[J]. 硅酸盐学报, 2022, 50(2): 403-412.
[20] TANG Y J, ZUO X B, HE S L, et al. Influence of slag content and water-binder ratio on leaching behavior of cement pastes[J]. Construction and Building Materials, 2016, 129: 61-69.
[21] YANG H, JIANG L H, ZHANG Y. The effect of fly ash on calcium leaching properties of cement pastes in ammonium chloride solution[J]. Advanced Materials Research, 2010, 163/164/165/166/167: 1162-1170.
[22] 马强. 水泥基材料内钙离子: 氯离子传输模型及实验研究[D]. 南京: 南京理工大学, 2018.
[23] 赵杨. 基于氯化铵加速侵蚀下混凝土性能的影响研究[D]. 昆明: 云南农业大学, 2022.
[24] SEGURA I, MOLERO M, APARICIO S, et al. Decalcification of cement mortars: characterisation and modelling[J]. Cement and Concrete Composites, 2013, 35(1): 136-150.
[25] YANG H, JIANG L H, ZHANG Y, et al. Predicting the calcium leaching behavior of cement pastes in aggressive environments[J]. Construction and Building Materials, 2012, 29: 88-96.
[26] 李悦, 管忠正, 王鹏. 海洋环境下腐蚀混凝土力学性能研究进展[J]. 武汉理工大学学报, 2015, 37(3): 83-89.