[1]陈晶,李雪.喷射火作用下石化装置热响应规律数值模拟研究[J].常州大学学报(自然科学版),2024,36(06):19-30.[doi:10.3969/j.issn.2095-0411.2024.06.003]
 CHEN Jing,LI Xue.Numerical simulation research on the thermal response law of petrochemical plants under the action of jet fire[J].Journal of Changzhou University(Natural Science Edition),2024,36(06):19-30.[doi:10.3969/j.issn.2095-0411.2024.06.003]
点击复制

喷射火作用下石化装置热响应规律数值模拟研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第36卷
期数:
2024年06期
页码:
19-30
栏目:
石油与天然气工程
出版日期:
2024-12-03

文章信息/Info

Title:
Numerical simulation research on the thermal response law of petrochemical plants under the action of jet fire
文章编号:
2095-0411(2024)06-0019-12
作者:
陈晶1李雪2
1.常州大学 机械与轨道交通学院, 江苏 常州 213164; 2.常州大学 石油与天然气工程学院, 江苏 常州 213164
Author(s):
CHEN Jing1 LI Xue2
(1.School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China; 2.School of Petroleum and Natural Gas Engineering, Changzhou University, Changzhou 213164, China)
关键词:
石化装置 喷射火 峰值温度 温升规律 热响应规律 喷射口径
Keywords:
petrochemical equipment jet fire peak temperature temperature rise pattern thermal response law jet diameter
分类号:
X 937
DOI:
10.3969/j.issn.2095-0411.2024.06.003
文献标志码:
A
摘要:
为探究风速、风向、喷射口径对喷射火作用下石化装置温升规律的影响,采用火灾动力学模拟(FDS)软件对喷射火作用下石化装置温升规律开展了系统的数值模拟研究。结果表明喷射口径小于0.15 m时,装置的温升速率随喷射口径的增大增速较快,喷射口径大于0.2 m时,装置的温升速率随喷射口径的增大增速减缓,石化装置的温升速率与喷射口径呈指数函数关系。风速和风向都会对石化装置的峰值温度和温升速率产生较大的影响,石化装置的温升速率随风速增大呈现一元三次函数的关系。风速增大时,装置峰值温度逐渐降低且降幅逐渐增大,风向与火焰夹角增大时,石化装置的峰值温度逐渐降低且降幅逐渐较小。研究建立了喷射火作用下石化装置温升定量计算公式,实现石化装置温度随喷射火作用时间变化的定量计算,可为安全管理与事故应急管理提供数据支撑。
Abstract:
To explore the influence of wind speed, wind direction, and jet diameter on the temperature rise of petrochemical equipment under the action of jet fire, this article uses fire dynamics simulation tool(FDS)software to conduct a systematic numerical simulation study on the temperature rise of petrochemical equipment under the action of jet fire. The results show that when the injection diameter is less than 0.15 m, the temperature rise rate of the device increases rapidly with the increase of the injection diameter.When the injection diameter is greater than 0.2 m, the temperature rise rate of the device slows down with the increase of the injection diameter. The temperature rise rate of the petrochemical device is exponentially related to the injection diameter. Both wind speed and direction have a significant impact on the peak temperature and temperature rise rate of petrochemical equipment. The temperature rise rate of petrochemical equipment exhibits a cubic function relationship with increasing wind speed. As the wind speed increases, the peak temperature of the device gradually decreases and the decrease amplitude gradually increases. As the angle between the wind direction and the flame increases, the peak temperature of the petrochemical device gradually decreases and the decrease amplitude gradually decreases. A quantitative calculation formula for temperature rise of petrochemical plants under the action of jet fire was established. This model enables quantitative calculation of the change in temperature of petrochemical equipment over time due to the effect of jet fire, providing data support for safety management and emergency response management.

参考文献/References:

[1] 赵国伟, 李海洋. 2021年中国石油和化学工业经济运行报告[J].现代化工, 2022, 42(3): 249-251.
[2] 孟凡君. 2030年我国化工产值将占全球半壁江山[N]. 中国工业报, 2022-10-23(8).
[3] 王一昊, 凌晓东, 辛保泉, 等. 石化装置燃爆事故后果与防控模拟研究[J]. 安全、 健康和环境, 2022, 22(4): 28-32.
[4] WOODWARD J L, MUDAN K S. Liquid and gas discharge rates through holes in process vessels[J]. Journal of Loss Prevention in the Process Industries, 1991, 4(3): 161-165.
[5] 张荣钢, 张宏涛, 白玉星, 等. 兰州石化乙烯装置钢框架的抗火极限安全分析[J]. 建筑结构学报, 2007, 28(S1): 136-141.
[6] 王小蓉. 钢结构抗火分析与计算[D]. 哈尔滨: 哈尔滨工程大学, 2007.
[7] 张荣钢. 石化装备钢结构抗火力学行为与倒塌控制技术研究[D]. 北京: 清华大学, 2013.
[8] 龙清宇. 兰州石化钢框架装置抗火破坏机理研究[D]. 北京: 北方工业大学, 2008.
[9] 潘俊武. 石化钢结构火灾后材料力学性能研究[D]. 北京: 北方工业大学, 2013.
[10] KOURNIOTIS S P, KIRANOUDIS C T, MARKATOS N C. Statistical analysis of domino chemical accidents[J].Journal of Hazardous Materials, 2000, 71(1/2/3): 239-252.
[11] G?MEZ-MARES M, Z?RATE L, CASAL J. Jet fires and the domino effect[J]. Fire Safety Journal, 2008, 43(8): 583-588.
[12] COZZANI V, SALZANO E. The quantitative assessment of domino effects caused by overpressure[J]. Journal of Hazardous Materials, 2004, 107(3): 67-80.
[13] MA Q J, YOU J F, CHEN J H, et al. Numerical simulation of high-pressure jet fire in on-board hydrogen storage cylinders under fire conditions[J]. International Journal of Hydrogen Energy, 2024, 83: 335-354.
[14] LI X, SUN T X, ZHOU N, et al. Numerical simulation of thermodynamic response law of chemical pipeline corridor under jet fire environment[J]. Journal of Loss Prevention in the Process Industries, 2024, 89: 105278.
[15] SIDDAPUREDDY S, WEHRSTEDT K D, PRABHU S V. Heat transfer to bodies engulfed in di-tert-butyl peroxide pool fires-Numerical simulations[J]. Journal of Loss Prevention in the Process Industries, 2016, 44: 204-211.
[16] POURKERAMAT A, DANESHMEHR A, JALILI S, et al. Investigation of wind and smoke concentration effects on thermal instability of cylindrical tanks with fixed roof subjected to an adjacent fire[J]. Thin-Walled Structures, 2021, 160: 107384.
[17] 蒋秋军, 朱军, 王奥成, 等. 建造过程中大型复杂船舶火灾危险性的模拟研究[J]. 安全, 2024, 45(7): 61-67.
[18] AHMADI O, MORTAZAVI S B, PASDARSHAHRI H, et al. Consequence analysis of large-scale pool fire in oil storage terminal based on computational fluid dynamic(CFD)[J]. Process Safety and Environmental Protection, 2019, 123: 379-389.
[19] YUAN Y P, WU S F, SHEN B Y. A numerical simulation of the suppression of hydrogen jet fires on hydrogen fuel cell ships using a fine water mist[J]. International Journal of Hydrogen Energy, 2021, 46(24): 13353-13364.
[20] 黄有波, 吕淑然. FDS模拟小孔径喷射火特性的有效性研究[J]. 消防科学与技术, 2016, 35(2): 162-166.
[21] SUN L P, YAN H B, LIU S H, et al. Load characteristics in process modules of offshore platforms under jet fire: the numerical study[J]. Journal of Loss Prevention in the Process Industries, 2017, 47: 29-40.
[22] 董炳燕, 黄有波, 孟江, 等. 障碍物对天然气喷射火影响的数值模拟研究[J]. 中国安全生产科学技术, 2016, 12(1): 111-116.
[23] 周宁, 吴露露, 李雪, 等. 喷射火环境下石化管廊管道失效特征试验研究[J]. 中国安全科学学报, 2022, 32(1): 135-141.

备注/Memo

备注/Memo:
收稿日期: 2024-06-23。
基金项目: 江苏省“六大人才高峰”高层次人才创新人才团队资助项目(TD-JNHB-013); 江苏省教育厅高校哲学社会科学研究重大项目(2022SJZD062)。
作者简介: 陈晶(1975—), 女, 黑龙江伊春人, 硕士, 讲师。通信联系人: 李雪(1987—), E-mail: lix@cczu.edu.cn
更新日期/Last Update: 1900-01-01