[1]蒲良桃,蔡丽娟,孙广平.新型亚水杨基苯胺类人工光捕获体系的构建[J].常州大学学报(自然科学版),2024,36(06):31-36.[doi:10.3969/j.issn.2095-0411.2024.06.004]
 PU Liangtao,CAI Lijuan,SUN Guangping.Construction of a novel salicylidene-aniline-based artificial light-harvesting system[J].Journal of Changzhou University(Natural Science Edition),2024,36(06):31-36.[doi:10.3969/j.issn.2095-0411.2024.06.004]
点击复制

新型亚水杨基苯胺类人工光捕获体系的构建()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第36卷
期数:
2024年06期
页码:
31-36
栏目:
化学化工
出版日期:
2024-12-03

文章信息/Info

Title:
Construction of a novel salicylidene-aniline-based artificial light-harvesting system
文章编号:
2095-0411(2024)06-0031-06
作者:
蒲良桃1蔡丽娟2孙广平2
1.常州大学 城市建设学院, 江苏 常州 213164; 2.南通大学 化学化工学院, 江苏 南通 226019
Author(s):
PU Liangtao1 CAI Lijuan2 SUN Guangping2
(1.School of Urban Construction, Changzhou University, Changzhou 213164, China; 2.School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China)
关键词:
人工光捕获 主客体作用 超分子自组装 水溶性柱[5]芳烃
Keywords:
artificial light-harvesting host-guest interaction supramolecular self-assembly water-soluble pillar[5]arene
分类号:
O 62; O 641.3
DOI:
10.3969/j.issn.2095-0411.2024.06.004
文献标志码:
A
摘要:
设计合成了一种新型亚水杨基苯胺类客体分子(PPA),通过水溶性柱[5]芳烃(WP5)的诱导组装,成功构筑了WP5 PPA超分子纳米粒子。由于染料分子4,7-双(噻吩-2-基)-2,1,3-苯并噻二唑(DBT)的紫外吸收与WP5 PPA的荧光发射高度重叠,WP5 PPA两亲体在包载DBT后,成功构筑了一种新型的水相WP5 PPA-DBT人工光捕获系统。人工光捕获结果表明其具有70.5%的能量转移效率和32.2的天线效应,在水相人工光捕获系统中具有潜在的应用价值。
Abstract:
WP5 PPA nanoparticles were firstly fabricated by the supramolecular assembly of water-soluble pillar[5]arene(WP5)and salicylidene-aniline guest(PPA). Due to the UV absorption of 4,7-bis(thien-2-yl)-2,1,3-benzothiadiazole(DBT)covering well with the emission of WP5 PPA, a novel aqueous artificial light-harvesting system was successfully constructed, which showed the energy transfer efficiency of 70.5% and antenna effect of 32.2, suggesting a potential application in aqueous artificial light-harvesting systems.

参考文献/References:

[1] MIRKOVIC T, OSTROUMOV E E, ANNA J M, et al. Light absorption and energy transfer in the antenna complexes of photosynthetic organisms[J]. Chemical Reviews, 2017, 117(2): 249-293.
[2] WANG M M, SONG Y, ZHANG S, et al. Programmable two-dimensional nanocrystals assembled from POSS-containing peptoids as efficient artificial light-harvesting systems[J]. Science Advances, 2021, 7(20): eabg1448.
[3] PENG H Q, NIU L Y, CHEN Y Z, et al. Biological applications of supramolecular assemblies designed for excitation energy transfer[J]. Chemical Reviews, 2015, 115(15): 7502-7542.
[4] HAO M, SUN G P, ZUO M Z, et al. A supramolecular artificial light-harvesting system with two-step sequential energy transfer for photochemical catalysis[J]. Angewandte Chemie(International Ed in English), 2020, 59(25): 10095-10100.
[5] ZHANG Z Y, ZHAO Z Q, WU L W, et al. Emissive platinum(II)cages with reverse fluorescence resonance energy transfer for multiple sensing[J]. Journal of the American Chemical Society, 2020, 142(5): 2592-2600.
[6] WANG X H, LOU X Y, LU T, et al. Supramolecular engineering of efficient artificial light-harvesting systems from cyanovinylene chromophores and pillar[5]arene-based polymer hosts[J]. ACS Applied Materials & Interfaces, 2021, 13(3): 4593-4604.
[7] RAO K V, DATTA K K, ESWARAMOORTHY M, et al. Light-harvesting hybrid hydrogels: energy-transfer-induced amplified fluorescence in noncovalently assembled chromophore-organoclay composites[J]. Angewandte Chemie(International Ed in English), 2011, 50(5): 1179-1184.
[8] ZUO M Z, QIAN W R, LI T H, et al. Full-color tunable fluorescent and chemiluminescent supramolecular nanoparticles for anti-counterfeiting inks[J]. ACS Applied Materials & Interfaces, 2018, 10(45): 39214-39221.
[9] SUN G P, CAI L J, ZHANG Y, et al. Salicylideneaniline-based aqueous supramolecular artificial light-harvesting platforms with biocompatibility[J]. Dyes and Pigments, 2022, 205: 110577.
[10] WANG X H, SONG N, HOU W, et al. Efficient aggregation-induced emission manipulated by polymer host materials[J]. Advanced Materials, 2019, 31(37): e1903962.
[11] LI W J, WANG X Q, ZHANG D Y, et al. Artificial light-harvesting systems based on aiegen-branched rotaxane dendrimers for efficient photocatalysis[J]. Angewandte Chemie(International Ed in English), 2021, 60(34): 18761-18768.
[12] GUO S W, SONG Y S, HE Y L, et al. Highly efficient artificial light-harvesting systems constructed in aqueous solution based on supramolecular self-assembly[J]. Angewandte Chemie(International Ed in English), 2018, 57(12): 3163-3167.
[13] XIAO T X, WEI X Y, WU H R, et al. Acetal-based spirocyclic skeleton bridged tetraphenylethylene dimer for light-harvesting in water with ultrahigh antenna effect[J]. Dyes and Pigments, 2021, 188: 109161.
[14] LI J J, CHEN Y, YU J, et al. A supramolecular artificial light-harvesting system with an ultrahigh antenna effect[J]. Advanced Materials, 2017, 29(30): 1701905.
[15] SUN G P, QIAN W R, JIAO J M, et al. A highly efficient artificial light-harvesting system with two-step sequential energy transfer based on supramolecular self-assembly[J]. Journal of Materials Chemistry A, 2020, 8(19): 9590-9596.
[16] SUN G P, WANG Z X, HU Y Q, et al. Anthryl-cinnamonitrile-based supramolecular artificial light-harvesting systems with high efficiency fabricated in aqueous solution[J]. Dyes and Pigments, 2022, 197: 109913.

相似文献/References:

[1]肖唐鑫,周玲,魏小艳,等.脲基嘧啶酮衍生的苯并21冠7的合成及其主客体行为[J].常州大学学报(自然科学版),2021,33(01):29.[doi:10.3969/j.issn.2095-0411.2021.01.005]
 XIAO Tangxin,ZHOU Ling,WEI Xiaoyan,et al.Synthesis of Ureidopyrimidinone-Linked Benzo-21-Crown-7 and Its Host-Guest Behaviors[J].Journal of Changzhou University(Natural Science Edition),2021,33(06):29.[doi:10.3969/j.issn.2095-0411.2021.01.005]

备注/Memo

备注/Memo:
收稿日期: 2024-04-20。
基金项目: 江苏省自然科学基金资助项目(BK20220601)。
作者简介: 蒲良桃(1991—), 女, 江苏连云港人, 博士, 讲师。通信联系人: 孙广平(1989—), E-mail: sunguangping1989@ntu.edu.cn
更新日期/Last Update: 1900-01-01