参考文献/References:
[1] CUI W. A Chinese text classification system based on Naive Bayes algorithm[J]. MATEC Web of Conferences, 2016, 44: 01015.
[2] MIAO F, ZHANG P, JIN L B, et al. Chinese news text classification based on machine learning algorithm[C]//2018 10th International Conference on Intelligent Human-Machine Systems and Cybernetics(IHMSC). Hangzhou: IEEE, 2018: 48-51.
[3] GOUDJIL M, KOUDIL M, BEDDA M, et al. A novel active learning method using SVM for text classification[J]. International Journal of Automation and Computing, 2018, 15(3): 290-298.
[4] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems-Volume 2. New York: ACM, 2013: 3111-3119.
[5] PENNINGTON J, SOCHER R, MANNING C. Glove: global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing(EMNLP). Stroudsburg: Association for Computational Linguistics, 2014: 1532-1543.
[6] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics. [S.l.]:[s.n.], 2019: 4171-4186.
[7] HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[EB/OL]. 2015: arXiv: 1503.02531.[2015-03-09]. https://arxiv.org/abs/1503.02531.pdf.
[8] GOU J P, YU B S, MAYBANK S J, et al. Knowledge distillation: a survey[J]. International Journal of Computer Vision, 2021, 129(6): 1789-1819.
[9] LI L, XIAO L L, WANG N Z, et al. Text classification method based on convolution neural network[C]//2017 3rd IEEE International Conference on Computer and Communications(ICCC). Chengdu: IEEE, 2018: 1985-1989.
[10] LUAN Y D, LIN S F. Research on text classification based on CNN and LSTM[C]//2019 IEEE International Conference on Artificial Intelligence and Computer Applications(ICAICA). Dalian: IEEE, 2019: 352-355.
[11] 孙新, 唐正, 赵永妍, 等. 基于层次混合注意力机制的文本分类模型[J]. 中文信息学报, 2021, 35(2): 69-77.
[12] WU Z H, PAN S R, CHEN F W, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4-24.
[13] YAO L A, MAO C S, LUO Y A. Graph convolutional networks for text classification[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 7370-7377.
[14] BASTINGS J, TITOV I, AZIZ W, et al. Graph convolutional encoders for syntax-aware neural machine translation[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2017: 1957-1967.
[15] HUANG L Z, MA D H, LI S J, et al. Text level graph neural network for text classification[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing(EMNLP-IJCNLP). Stroudsburg: Association for Computational Linguistics, 2019: 3444-3450.
[16] SUN C, QIU X P, XU Y G, et al. How to fine-tune BERT for text classification?[C]//SUN M, HUANG X, JI H, et al. China National Conference on Chinese Computational Linguistics. Cham: Springer, 2019: 194-206.
[17] TANG R, LU Y, LIU L Q, et al. Distilling task-specific knowledge from BERT into simple neural networks[EB/OL]. 2019: arXiv: 1903.12136.[2019-03-28]. https://arxiv.org/abs/1903.12136.pdf.
[18] SUN S Q, CHENG Y, GAN Z, et al. Patient knowledge distillation for BERT model compression[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing(EMNLP-IJCNLP). Stroudsburg: Association for Computational Linguistics, 2019: 4323-4332.
[19] JIAO X Q, YIN Y C, SHANG L F, et al. TinyBERT: distilling BERT for natural language understanding[C]//Findings of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2020: 4163-4174.
[20] OZEROV A, DUONG N Q K. Inplace knowledge distillation with teacher assistant for improved training of flexible deep neural networks[C]//2021 29th European Signal Processing Conference(EUSIPCO). Dublin: IEEE, 2021: 1356-1360.
[21] 黄震华, 杨顺志, 林威, 等. 知识蒸馏研究综述[J]. 计算机学报, 2022, 45(3): 624-653.
[22] CUI Y M, CHE W X, LIU T, et al. Revisiting pre-trained models for Chinese natural language processing[C]//Findings of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2020: 657-668.
[23] HUANG S, PAPERNOT N, GOODFELLOW I, et al. Adversarial Attacks on Neural Network Policies[C]//Proceedings of the International Conference on Learning Representations. France:International Machine Learning, 2017: 24-26.
[24] KARIMI A, ROSSI L, PRATI A. Adversarial training for aspect-based sentiment analysis with BERT[C]//2020 25th International Conference on Pattern Recognition(ICPR). Milan: IEEE, 2021: 8797-8803.
[25] KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing(EMNLP). Stroudsburg: Association for Computational Linguistics, 2014: 1746-1751.
[26] LIU P F, QIU X P, HUANG X J. Recurrent neural network for text classification with multi-task learning[C]//Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. New York: ACM, 2016: 2873-2879.
[27] JOHNSON R, ZHANG T. Deep pyramid convolutional neural networks for text categorization[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics(Volume 1: Long Papers). Stroudsburg: Association for Computational Linguistics, 2017: 562-570.