参考文献/References:
[1] NARRON R H, KIM H, CHANG H M, et al. Biomass pretreatments capable of enabling lignin valorization in a biorefinery process[J]. Current Opinion in Biotechnology, 2016, 38: 39-46.
[2] CANTERO D, JARA R, NAVARRETE A, et al. Pretreatment processes of biomass for biorefineries: current status and prospects[J]. Annual Review of Chemical and Biomolecular Engineering, 2019, 10: 289-310.
[3] 徐忠, 宁艳春, 严生虎, 等. 磷酸钠组合氧气预处理提高玉米秸秆酶解糖化效率[J]. 常州大学学报(自然科学版), 2021, 33(3): 65-74.
[4] HE J L, LIU X Y, XIA J, et al. One-step utilization of non-detoxified pretreated lignocellulose for enhanced cellulolytic enzyme production using recombinant Trichoderma reesei RUT C30 carrying alcohol dehydrogenase and nicotinate phosphoribosyltransferase[J]. Bioresource Technology, 2020, 310: 123458.
[5] LI Y, QI B K, WAN Y H. Inhibitory effect of vanillin on cellulase activity in hydrolysis of cellulosic biomass[J]. Bioresource Technology, 2014, 167: 324-330.
[6] FRANDEN M A, PILATH H M, MOHAGHEGHI A, et al. Inhibition of growth of Zymomonas mobilis by model compounds found in lignocellulosic hydrolysates[J]. Biotechnology for Biofuels, 2013, 6(1): 99-105.
[7] DU J, LIANG J R, ZHANG X J, et al. Identifying the negative cooperation between major inhibitors of cellulase activity and minimizing their inhibitory potential during hydrolysis of acid-pretreated corn stover[J]. Bioresource Technology, 2022, 343: 126113.
[8] ZHENG D Q, JIN X N, ZHANG K, et al. Novel strategy to improve vanillin tolerance and ethanol fermentation performances of Saccharomycere cerevisiae strains[J]. Bioresource Technology, 2017, 231: 53-58.
[9] HACSALIHOGˇLU B, HOLYAVKIN C, TOPALOGˇLU A, et al. Genomic and transcriptomic analysis of a coniferyl aldehyde-resistant Saccharomyces cerevisiae strain obtained by evolutionary engineering[J]. FEMS Yeast Research, 2019, 19(3): 21-27.
[10] YAN Z, ZHANG J, BAO J. Increasing cellulosic ethanol production by enhancing phenolic tolerance of Zymomonas mobilis in adaptive evolution[J]. Bioresource Technology, 2021, 329: 124926.
[11] LIU H H, ZHANG J, YUAN J, et al. Gene coexpression network analysis reveals a novel metabolic mechanism of Clostridium acetobutylicum responding to phenolic inhibitors from lignocellulosic hydrolysates[J]. Biotechnology for Biofuels, 2020, 13: 163-169.
[12] YI X, GU H Q, GAO Q Q, et al. Transcriptome analysis of Zymomonas mobilis ZM4 reveals mechanisms of tolerance and detoxification of phenolic aldehyde inhibitors from lignocellulose pretreatment[J]. Biotechnology for Biofuels, 2015, 8: 153-157.
[13] LIANG Z Z, WANG X N, BAO X M, et al. Newly identified genes contribute to vanillin tolerance in Saccharomyces cerevisiae[J]. Microbial Biotechnology, 2021, 14(2): 503-516.
[14] CAO W Y, ZHAO W Q, YANG B L, et al. Proteomic analysis revealed the roles of YRR1 deletion in enhancing the vanillin resistance of Saccharomyces cerevisiae[J]. Microbial Cell Factories, 2021, 20(1): 142.
[15] ZHAO W Q, WANG X N, YANG B L, et al. Unravel the regulatory mechanism of YRR1p phosphorylation in response to vanillin stress in Saccharomyces cerevisiae[J]. Microbial Cell Factories, 2023, 22(1): 48.
[16] XIA J, YANG Y F, LIU C G, et al. Engineering Zymomonas mobilis for robust cellulosic ethanol production[J]. Trends in Biotechnology, 2019, 37(9): 960-972.
[17] YANG S H, FEI Q, ZHANG Y P, et al. Zymomonas mobilis as a model system for production of biofuels and biochemicals[J]. Microbial Biotechnology, 2016, 9(6): 699-717.
[18] GU H Q, ZHANG J, BAO J. High tolerance and physiological mechanism of Zymomonas mobilis to phenolic inhibitors in ethanol fermentation of corncob residue[J]. Biotechnology and Bioengineering, 2015, 112(9): 1770-1782.
[19] YANG S H, PELLETIER D A, LU T Y S, et al. The Zymomonas mobilis regulator contributes to tolerance against multiple lignocellulosic pretreatment inhibitors[J]. BMC Microbiology, 2010, 10: 135-141.
[20] YI X, GAO Q Q, BAO J. Expressing an oxidative dehydrogenase gene in ethanologenic strain Zymomonas mobilis promotes the cellulosic ethanol fermentability[J]. Journal of Biotechnology, 2019, 303: 1-7.
[21] YI X, MEI J, LIN L, et al. Overexpression of dioxygenase encoding gene accelerates the phenolic aldehyde conversion and ethanol fermentability of Zymomonas mobilis[J]. Applied Biochemistry and Biotechnology, 2021, 193(9): 3017-3027.
[22] YI X, WU J F, JIANG H, et al. Kinase expression enhances phenolic aldehydes conversion and ethanol fermentability of Zymomonas mobilis[J]. Bioprocess and Biosystems Engineering, 2022, 45(8): 1319-1329.
[23] WANG S, LIN R X, TUMUKUNDE E, et al. Glutamine synthetase contributes to the regulation of growth, conidiation, sclerotia development, and resistance to oxidative stress in the fungus Aspergillus flavus[J]. Toxins, 2022, 14(12): 822-829.
[24] LI X, WANG S D, ZHANG M Z, et al. Glutamine synthetase(GS)deficiency can affect ammonia tolerance of yellow catfish Pelteobagrus fulvidraco[J]. Fish & Shellfish Immunology, 2022, 126: 104-112.
[25] LEE H J, ABDULA S E, JANG D W, et al. Overexpression of the glutamine synthetase gene modulates oxidative stress response in rice after exposure to cadmium stress[J]. Plant Cell Reports, 2013, 32(10): 1521-1529.
[26] NAGY Z, NÉMETH E, GUÓTH A, et al. Metabolic indicators of drought stress tolerance in wheat: glutamine synthetase isoenzymes and rubisco[J]. Plant Physiology and Biochemistry, 2013, 67: 48-54.
[27] DONG H W, BAO J, RYU D D Y, et al. Design and construction of improved new vectors for Zymomonas mobilis recombinants[J]. Biotechnology and Bioengineering, 2011, 108(7): 1616-1627.
[28] DONG H W, FAN L Q, LUO Z C, et al. Improvement of ethanol productivity and energy efficiency by degradation of inhibitors using recombinant Zymomonas mobilis(pHW20a-fdh)[J]. Biotechnology and Bioengineering, 2013, 110(9): 2395-2404.
[29] GONG C J, YOU X H, ZHANG S Y, et al. Functional analysis of a glutamine biosynthesis protein from a psychrotrophic bacterium, Cryobacterium soli GCJ02[J]. Indian Journal of Microbiology, 2020, 60(2): 153-159.
[30] ZHANG Y, LI B Z, LUO P, et al. Glutamine synthetase plays an important role in ammonium tolerance of Myriophyllum aquaticum[J]. The Science of the Total Environment, 2022, 848: 157596.
[31] KICHEY T, LE GOUIS J, SANGWAN B, et al. Changes in the cellular and subcellular localization of glutamine synthetase and glutamate dehydrogenase during flag leaf senescence in wheat[J]. Plant and Cell Physiology, 2005, 46(6): 964-974.
[32] TRAVISB A, PECK J V, SALINAS R, et al. Molecular dissection of the glutamine synthetase-GlnR nitrogen regulatory circuitry in gram-positive bacteria[J]. Nature Communications, 2022, 13(1): 3793-3799.
[33] CUI G X, MI J N, MORET A, et al. A carbon-nitrogen negative feedback loop underlies the repeated evolution of cnidarian-symbiodiniaceae symbioses[J]. Nature Communications, 2023, 14(1): 6949-6955.
[34] HACHIYA T, INABA J, WAKAZAKI M, et al. Excessive ammonium assimilation by plastidic glutamine synthetase causes ammonium toxicity in Arabidopsis thaliana[J].Nature Communications, 2021, 12(1): 4944-4951.
[35] TAKANO H K, BEFFA R, PRESTON C, et al. A novel insight into the mode of action of glufosinate:how reactive oxygen species are formed[J]. Photosynthesis Research, 2020, 144(3): 361-372.
[36] GAO Y J, DE BANG T C, SCHJOERRING J K. Cisgenic overexpression of cytosolic glutamine synthetase improves nitrogen utilization efficiency in barley and prevents grain protein decline under elevated CO2[J]. Plant Biotechnology Journal, 2019, 17(7): 1209-1221.
[37] MARGELIS S, D'SOUZA C, SMALL A J, et al. Role of glutamine synthetase in nitrogen metabolite repression in Aspergillus nidulans[J]. Journal of Bacteriology, 2001, 183(20): 5826-5833.
[38] SASAKI Y, KOJIMA A, SHIBATA Y, et al. Filamentous invasive growth of mutants of the genes encoding ammonia-metabolizing enzymes in the fission yeast Schizosaccharomyces pombe[J]. PLoS One, 2017, 12(10): e0186028.
[39] TEICHERT S, SCHÖNIG B, RICHTER S, et al. Deletion of the Gibberella fujikuroi glutamine synthetase gene has significant impact on transcriptional control of primary and secondary metabolism[J]. Molecular Microbiology, 2004, 53(6): 1661-1675.