[1]张粲,熊克,朱孔军.碳纳米管增强复合材料弹性模量预测模型[J].常州大学学报(自然科学版),2017,(02):7-12.[doi:10.3969/j.issn.2095-0411.2017.02.002]
 ZHANG Can,XIONG Ke,ZHU Kongjun.Prediction Model of the Elastic Modulus of CNT Reinforced Nanocomposites[J].Journal of Changzhou University(Natural Science Edition),2017,(02):7-12.[doi:10.3969/j.issn.2095-0411.2017.02.002]
点击复制

碳纳米管增强复合材料弹性模量预测模型()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
期数:
2017年02期
页码:
7-12
栏目:
材料科学与工程
出版日期:
2017-03-28

文章信息/Info

Title:
Prediction Model of the Elastic Modulus of CNT Reinforced Nanocomposites
作者:
张粲熊克朱孔军
南京航空航天大学 航空宇航学院, 江苏 南京 210016; 南京航空航天大学 机械结构力学及控制国家重点实验室,江苏 南京 210016
Author(s):
ZHANG Can XIONG Ke ZHU Kongjun
College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; State Key Laboratory of Mechanics and Control of Mechanics Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
关键词:
碳纳米管 弹性模量 理论预测
Keywords:
carbon nanotube elastic modulus theoretical prediction
分类号:
TB 12
DOI:
10.3969/j.issn.2095-0411.2017.02.002
文献标志码:
A
摘要:
分析了几个经典预测碳纳米管聚合物复合材料弹性模量的方法,考虑碳纳米管的弯曲和团聚现象,改进Cox模型。对不同含量的多壁碳纳米管/环氧树脂复合材料进行拉伸实验,得到不同碳纳米管添加量下,材料力学特性的变化规律,并由实验结果得到改进模型中的常数项。将改进后的模型与后续实验结果相比较,验证了该方法的可靠性,且与改进前的模型相比,大大减小了误差。
Abstract:
In this paper, several classical prediction models of the elastic modulus of CNT reinforced nanocomposites were analysed. A modified Cox model was used due to the bending and aggregation of CNTs. The influences of CNTs with different volume fractions on mechanical properties were studied through tensile tests and the constant terms in modified model were calculated. In order to verify the suitability of the modified model, the ensuing predictions were compared with the previous model and the available experimental data in the tests. The results demonstrate a good predictability of the modified model.

参考文献/References:

[1]IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348): 56-58.
[2]GOJNY F H, WICHMANN M H G, K?PKE U, et al. Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content[J]. Composites Science and Technology, 2004, 64(15): 2363-2371.
[3]HERNáNDEZ-PéREZ A, AVILéS F, MAY-PAT A, et al. Effective properties of multiwalled carbon nanotube/epoxy composites using two different tubes[J]. Composites Science and Technology, 2008, 68(6): 1422-1431.
[4]STALNEK K. Modelling of stiffness and hygeoexpansion of wood fiber composites[J]. Structural Mechanics, 2001, 1(3061): 1-92.
[5]ALLAOUI A, BAI S, CHENG H M, et al. Mechanical and electrical properties of a MWNT/epoxy composite[J]. Composites Science and Technology, 2002, 62(15): 1993-1998.
[6]李其祥,袁观明,董志军,等. 纳米碳管/环氧树脂复合材料的力学性能研究[J]. 武汉理工大学学报,2009,15:25-28.
[7]王建国. 多壁碳纳米管/环氧树脂复合材料结构与性能的研究[D].杭州:浙江大学,2006.
[8]TUCKER III C L, LIANG E. Stiffness predictions for unidirectional short-fiber composites: review and evaluation[J]. Composites Science and Technology, 1999, 59(5): 655-671.
[9]ZHOU C, WANG S, ZHANG Y, et al. In situ preparation and continuous fiber spinning of polycomposites with oligo-hydroxyamide-functionalized multi-walled carbon nanotubes[J]. Polymer, 2008, 49(10): 2520-2530.
[10]AYATOLLAHI M R, SHADLOU S, SHOKRIEH M M. Fracture toughness of epoxy/multi-walled carbon nanotube nano-composites under bending and shear loading conditions[J]. Materials & Design, 2011, 32(4): 2115-2124.
[11]LIU T, PHANG I Y, SHEN L, et al. Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites[J]. Macromolecules, 2004, 37(19): 7214-7222.
[12]COX H L. The elasticity and strength of paper and other fibrous materials[J]. British Journal of Applied Physics, 1952, 3(3): 72.
[13]LANDIS C M, MCGLOCKTON M A, MCMEEKING R M. An improved shear lag model for broken fibers in composite materials[J]. Journal of Composite Materials, 1999, 33(7): 667-680.

备注/Memo

备注/Memo:
收稿日期:2016-11-15。
作者简介:张粲(1993—),女,江苏盐城人,硕士,主要从事智能材料结构与控制研究。
更新日期/Last Update: 2017-04-01