[1]王建浩,程永江,李进晨,等.靶向多肽修饰的磁性纳米粒子在肿瘤成像中的应用[J].常州大学学报(自然科学版),2017,(02):41-46.[doi:10.3969/j.issn.2095-0411.2017.02.008]
 WANG Jianhao,CHENG Yongjiang,LI Jinchen,et al.The Application of Magnetic Nanoparticles Modified with Targeting Peptide in the Tumor Imaging[J].Journal of Changzhou University(Natural Science Edition),2017,(02):41-46.[doi:10.3969/j.issn.2095-0411.2017.02.008]
点击复制

靶向多肽修饰的磁性纳米粒子在肿瘤成像中的应用()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
期数:
2017年02期
页码:
41-46
栏目:
生物医学工程
出版日期:
2017-03-28

文章信息/Info

Title:
The Application of Magnetic Nanoparticles Modified with Targeting Peptide in the Tumor Imaging
作者:
王建浩12程永江2李进晨2吴 昊2邱 琳2蒋鹏举2
1. 常州大学 怀德学院,江苏 靖江 214500; 2. 常州大学 制药与生命科学学院,江苏 常州 213164
Author(s):
WANG Jianhao12 CHENG Yongjiang2 LI Jinchen2WU Hao2 QIU Lin2JIANG Pengju2
1. Huaide College, Changzhou University, Jingjiang 214500, China; 2. School of Pharmaceutical Engineering and Life Science,Changzhou University, Changzhou 213164, China
关键词:
靶向多肽 磁性氧化铁纳米粒子 肿瘤成像
Keywords:
targeting peptide magnetic iron oxide nanoparticles tumor imaging
分类号:
Q 51
DOI:
10.3969/j.issn.2095-0411.2017.02.008
文献标志码:
A
摘要:
磁性纳米粒子在磁共振肿瘤成像中的应用已经得到广泛关注,相关研究也取得了各种突破性进展。与早期的被动模式相比,近年来发展的主动靶向性磁共振分子影像技术对靶器官具有高度的选择性和特异性,因此能提供更接近病理的相关信息,有更广阔的应用前景。围绕磁性氧化铁纳米粒子的肿瘤靶向成像应用,着重介绍靶向多肽修饰的磁性氧化铁纳米粒子的制备及其在疾病诊断应用,尤其是在肿瘤早期影像诊断方面的研究进展。
Abstract:
The applications of magnetic iron oxide nanoparticles in magnetic resonance tumor imaging have received great attention. Some related researches also made various breakthrough. In recent years, the active targeting magnetic resonance molecular imaging technology with high selectivity and specificity can provide more information closer to pathology, so it has a wider application prospect compared with the early passive targeting mode. This review mainly discusses the synthesis of magnetic iron oxide nanoparticals modified with targeting peptide and their MRI applications, especially in molecular imaging of early tumors.

参考文献/References:

[1]刘海云.癌症相关MicroRNA检测及成像研究[D].济南:山东师范大学,2014.
[2]HARIS M, YADAV S K, RIZWAN A, et al. Molecular magnetic resonance imaging in cancer[J]. J Transl Med, 2015, 13(1): 1-16.
[3]ROSI N L, MIRLIN C A. Nanostructures in biodiagnostics[J]. Chem Rev, 2005, 105(4): 1547-1562.
[4]MEDINTZ I L, UYEDA H T, GOLDMAN E R, et al. Quantum dot bioconjugates for imaging, labeling and sensing[J]. Nat Mater, 2005, 4(6): 435-446.
[5]CAO Y C, JIN R, MIRKIN C A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection[J]. Science, 2002, 297(5586): 1536-1540.
[6]ELIAS D R, CHENG Z, TSOURKAS A. An intein-mediated site-specific click conjugation strategy for improved tumor targeting of nanoparticle systems[J]. Small, 2010, 6(21): 2460-2468.
[7]WSISSLEDER R, PITTET M J. Imaging in the era of molecular oncology[J]. Nature, 2008, 452(7187): 580-589.
[8]DEGEN C L, POGGIO M, MAMIN H J, et al. Nanoscale magnetic resonance imaging[J]. Proc Natl Acad Sci USA, 2009, 106(5): 1313-1317.
[9]QIAO R R, YANG C H, GAO M Y. Superparamagnetic iron oxide nanoparticles: From preparations to in vivo MRI applications[J]. J Mater Chem, 2009, 19(19): 6274-6293.
[10]SUN C, LEE J S H, ZHANG M Q. Magnetic nanoparticles in MR imaging and drug delivery[J]. Adv Drug Deliv Rev, 2008, 60(11): 1252-1265.
[11]JUN Y W, LEE J H, CHEON J. Chemical design of nanoparticle probes for high-performance magnetic resonance imaging[J]. Angew Chem Int Ed, 2008, 47(28):5122-5135.
[12]COROT C, ROBERT P, IDEE J M,et al. Recent advances in iron oxide nanocrystal technology for medical imaging[J]. Adv Drug Deliv Rev, 2006, 58(14): 1471-1504.
[13]WAGNER V, DULLAART A, BOCK A K, et al. The emerging nanomedicine landscape[J]. Nat Biotechnol, 2006, 24(10): 1211-1217.
[14]SKIDMORE F M, DAVIDSON M, DONDA R S. Atomic magnetometer sensor array magnetic resonance imaging systems and methods: US9167979[P]. 2015-10-27.
[15]刘珍宝,石依倩,陈长仁,等.核酸适配体在肿瘤靶向治疗中应用的研究进展[J].科学通报,2014(14):1267-1279.
[16]孙汉文,张彦聪,宋新峰.等.超顺磁性氧化铁纳米粒子在肿瘤靶向诊断治疗中的应用进展[J].中国材料进展,2016,35(3):233-236.
[17]NORDMEYER D, STUMPF P, HOFMANN A, et al. Iron oxide nanoparticles stabilized with dendritic polyglycerols as selective MRI contrast agents[J]. Nanoscale, 2014, 6(16): 9646-9654.
[18]SENETERRE E, TAOUREL P, BOUVIER Y, et al. Detection of hepatic metastases: ferumoxides-enhanced MR imaging versus unenhanced MR imaging and CT during arterial portography[J]. Radiology, 1996, 200(3): 785-792.
[19]王瀚.多肽分子在肿瘤研究中的应用[J].绵阳师范学院学报,2014,33(11):53-56.
[20]PASQUALINI R, RUOSLAHTI E. Organ targeting in vivo using phage display peptide libraries[J]. Nature, 1996, 380(6572): 364-366.
[21]ARAP W, PASQUALINI R, RUOSLAHTI E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model[J]. Science, 1998, 279(5349): 377-380.
[22]SUN C, VEISEH O, GUNN J, et al. In vivo MRI detection of gliomas by chlorotoxin-conjugated superparamagnetic nanoprobes[J]. Small, 2008, 4(3): 372-379.
[23]LI Z J, WU W K K, NG S S M, et al. A novel peptide specifically targeting the vasculature of orthotopic colorectal cancer for imaging detection and drug delivery[J]. J Control Release, 2010, 148(3): 292-302.
[24]王建浩,李志杰,邱琳,等.基于靶向多肽的量子点探针用于结肠癌肿瘤组织识别[J]. 科学通报,2013,58(7):556-560.
[25]SINGH A, SAHOO S K. Magnetic nanoparticles: a novel platform for cancer theranostics[J]. Drug Discov Today, 2014, 19(4): 474-481.
[26]LEWIN M, CARLESSO N, TUNG C H, et al. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells[J]. Nat Biotechnol, 2000, 18(4): 410-414.
[27]XIE J, CHEN K, LEE H Y, et al. Ultrasmall c(RGDyK)-coated Fe3O4 nanoparticles and their specific targeting to integrin alpha(v)-beta(3)-rich tumor cells[J]. J Am Chem Soc, 2008, 130(24): 7542-7543.
[28]HUANG G, ZHANG C, LI S, et al. A novel strategy for surface modification of superparamagnetic iron oxide nanoparticles for lung cancer imaging[J]. J Mater Chem, 2009, 19: 6367-6372.
[29]SUNDERLAND C J, STEIERT M, TALMADGE J E, et al. Targeted nanoparticles for detecting and treating cancer[J]. Drug Develop Res, 2006, 67(1): 70-93.
[30]MONTET X, FUNOVICS M, MONTET-ABOU K, et al. Multivalent effects of RGD peptides obtained by nanoparticle display[J]. J Med Chem, 2006, 49(20): 6087-6093.
[31]ZHANG C F, JUGOLD M, WOENNE E C, et al. Specific targeting of tumor angiogenesis by RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 1.5-T magnetic resonance scanner[J]. Cancer Res, 2007, 67(4): 1555-1562.
[32]SIMBERG D, DUZA T, PARK J H, et al. Biomimetic amplification of nanoparticle homing to tumors[J]. Proc Natl Acad Sci USA, 2007, 104(3): 932-936.
[33]KELLY K A, ALLPOTR J R, TSOURKAS A, et al. Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle[J]. Circ Res, 2005, 96(3): 327-336.
[34]MONTET X, WEISSLEDER R, JOSEPHSON L. Imaging pancreatic cancer with a peptide-nanoparticle conjugate targeted to normal pancreas[J]. Bioconjugate Chem, 2006, 17(4): 905-911.
[35]MOORE A, MEDAROVA Z, POTTHAST A, et al. In vivo targeting of underglycosylated MUC-1 tumor antigen using a multimodal imaging probe[J]. Cancer Res, 2004, 64(5): 1821-1827.
[36]LEUSCHNER C, KUMAR C S, HANSEL W, et al. LHRH-conjugated magnetic iron oxide nanoparticles for detection of breast cancer metastases[J]. Breast Cancer Res Treat, 2006, 99(2): 163-176.
[37]IQBAL M Z, MA X, CHEN T, et al. Silica-coated super-paramagnetic iron oxide nanoparticles(SPIONPs): A new type contrast agent of T 1 magnetic resonance imaging(MRI)[J]. J Mater Chem B, 2015, 3(26): 5172-5181.
[38]THU H P, NAM N H, QUANG B T, et al. In vitro, and in vivo, targeting effect of folate decorated paclitaxel loaded PLA-TPGS nanoparticles[J]. Saudi Pharm J, 2015, 23(6): 683-688.

备注/Memo

备注/Memo:
收稿日期:2016-06-14。
基金项目:靖江市科技局资助(CDHJZ1509009); 常州市国际合作项目资助(CZ20160015)。
作者简介:王建浩(1981—),男,山东文鉴人,博士,副教授,主要从事纳米生物分析及化学生物学研究。通讯联系人:蒋鹏举(1979-),E-mail: qengju.jiang@gmail.com
更新日期/Last Update: 2017-04-01