[1]刘英杰,杨基和,蓝兴英,等.FCC提升管内气液固三相流动的数值模拟研究[J].常州大学学报(自然科学版),2018,30(02):7-13.[doi:10.3969/j.issn.2095-0411.2018.02.002]
 LIU Yingjie,YANG Jihe,LAN Xingying,et al.Numerical Simulation of Gas-Solid-Liquid Three Phase Flow in FCC Riser[J].Journal of Changzhou University(Natural Science Edition),2018,30(02):7-13.[doi:10.3969/j.issn.2095-0411.2018.02.002]
点击复制

FCC提升管内气液固三相流动的数值模拟研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第30卷
期数:
2018年02期
页码:
7-13
栏目:
化学化工
出版日期:
2018-03-31

文章信息/Info

Title:
Numerical Simulation of Gas-Solid-Liquid Three Phase Flow in FCC Riser
作者:
刘英杰1杨基和1蓝兴英2高金森2
1. 常州大学 江苏省绿色催化材料与技术重点实验室, 江苏 常州 213164; 2. 中国石油大学(北京)重质油国家重点实验室,北京 102249
Author(s):
LIU Yingjie1 YANG Jihe1 LAN Xingying2 GAO Jinsen2
1. Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, China; 2. State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
关键词:
催化裂化提升管 三相流化 数值模拟
Keywords:
FCC riser three phase fluidization numerical simulation
分类号:
TQ 018
DOI:
10.3969/j.issn.2095-0411.2018.02.002
文献标志码:
A
摘要:
采用Fluent软件,耦合提升管内油气、雾滴和催化剂间的动量、热量和质量传递,建立了气液固三相作用模型。采用此模型对FCC提升管进料雾滴的气化过程以及气液固三相流动进行了模拟研究,考察了雾滴在提升管内的气化时间,以及不同碰撞几率下各相的体积分数分布、液固传质速率和催化剂上吸附的液相含量。结果表明,非气化组分的气化时间很短,对气液固三相流动的影响很小,但其在催化剂上的大量吸附会降低催化剂活性,最终影响FCC反应效果。
Abstract:
Using Fluent software, coupling the momentum, heat and mass transfer models of oil gas, droplets and catalysts, a gas-liquid-solid flow model was proposed. Based on the above model, the gasification time of the liquid droplet, the liquid and solid volume fraction distributions, the liquid and solid mass transfer rates, as well as the contents of liquid adsorbed in catalysts were analyzed. The results showed that the gasification time of liquid droplets is very short. The existence of high-boiling-point components has little effect on flow behaviours. However, the mass transfer of liquid to solid phase decreases the activity of catalysts, thus impact the final FCC reaction effects.

参考文献/References:

[1]范怡平. 催化裂化提升管内气固两相流动特性的研究[D]. 北京:石油大学(北京), 2000.
[2]GEHRKE S, WIRTH K E. Riser flow pattern with liquid feed injection at elevated temperature[C]// 9th International Conference on Circulating Fluidized Beds. Hamburg: PARTEC Congress, 2008.
[3]FAN L S, LAU R, ZHU C, et al. Evaporative liquid jets in gas-liquid-solid flow system[J]. Chem Eng Sci, 2001, 56: 5871-5891.
[4]GUPTA A, RAO D S. Model for the performance of a fluid catalytic cracking riser reactor: effort of feed atomization[J]. Chem Eng Sci, 2001, 56(15): 4489-4503.
[5]LU H, SUN Q, HE Y, et al. Numerical study of particle cluster flow in risers with cluster-based approach[J]. Chem Eng Sci, 2005, 60(23): 6757-6767.
[6]GAO J, LAN X, FAN Y, et al. CFD Modeling and Validation of the Turbulent Fluidized Bed of FCC Particles[J]. AIChE J, 2009, 55(7): 1680-1694.
[7]LI J, CHENG C, ZHANG Z, et al. The EMMS model-its application, development and updated concepts[J]. Chem Eng Sci, 1999, 54: 5409-5425.
[8]LI J, GE W, WANG W, et al. Focusing on mesoscales: from the energy-minimization multiscale model to mesoscience[J]. Current Option in Chem Eng, 2016, 13: 10-23.
[9]CHANG J, MENG F, WANG L, et al. CFD investigation of hydrodynamics, heat transfer and cracking reaction in a heavy oil riser with bottom airlift loop mixer[J]. Chem Eng Sci, 2012, 78(20): 128-143.
[10]CHEN S, FAN Y, YAN Z, et al. CFD optimization of feedstock injection angle in a FCC riser[J]. Chem Eng Sci, 2016, 153: 58-74.
[11]SHAH M T, UTIKAR R P, PAREEK V K, et al. Computational fluid dynamic modeling of FCC riser: a review[J]. Chem Eng Res Des, 2016, 111: 403-448.
[12]NGUYEN T T B, MITRA S, PAREEK V, ea al. Comparison of vaporization models for feed droplet in fluid catalytic cracking risers[J]. Chem Eng Res Des, 2015, 101:82-97.
[13]YANG N, WANG W, GE W, et al. CFD simulation of concurrent-up gas-solid flow in circulating fluidized beds with structure-dependent drag coefficient[J]. Chem Eng J, 2003, 96(1/2/3):71-80.
[14]ISSA R L, OLIVEIRA P J. Validation of two-fluid model in shear-free mixing layers[J]. ASME-PUBLICATIONS-FED, 1996, 236: 112-120.
[15]GE Y, FAN L S. Drop-particle collision mechanics with film-boiling evaporation[J]. J Fluid Mechanics, 2007, 573: 311-337.
[16]GUNN D J. Transfer of heat or mass to particles in fixed and fluidized-beds[J]. Int J Heat Mass Trans, 1978, 21(4): 467-476.
[17]LI T, POUGATCH K, SALCUDEAN M, et al. Numerical modeling of an evaporative spray in a riser[J]. Powder Technol, 2010, 201: 213-229.
[18]BUCHANAN J S. Analysis of heating and vaporization of feed droplets in fluidized catalytic cracking risers[J]. Ind Eng Chem Res, 1994, 33: 3104-3111.
[19]NAYAK S V, JOSHI S L, RANADE V V. Modeling of vaporization and cracking of liquid oil injected in a gas-solid riser[J]. Chem Eng Sci, 2005, 60(22): 6049-6066.
[20]IYER V, ABRABAM A. Two-fluid modeling of spray penetration and dispersion under diesel engineconditions[J]. Atomization and Sprays, 2005, 15(3): 249-269.
[21]HEINRICH S, BLUMSCHEIN J, HENNEBERG M, et al. Study of dynamic multi-dimensional temperature and concentration distributions in liquid-sprayed fluidized beds[J]. Chem Eng Sci, 2003, 58(23/24): 5135-5160.
[22]GERA D, SYAMLAL M, O’BRIEN T J. Hydrodynamics of particle segregation in fluidizedbeds[J]. Int J Multiphase Flow, 2004, 30(4): 419-428.

备注/Memo

备注/Memo:
收稿日期:2017-12-10。
基金项目:国家自然科学基金项目(21306014); 重质油国家重点实验室开放基金资助项目(SKLOP20163001); 江苏省绿色催化材料与技术实验室开放课题(BM2012110)。
作者简介:刘英杰(1982—),女,山东威海人,博士,讲师。通信联系人:杨基和(1955—),E-mail:yangjihe@cczu.edu.cn
更新日期/Last Update: 2018-03-20