[1]查建华,杨彦,冯昊瑜,等.基于响应曲面法的生物质多孔碳工艺参数研究及应用[J].常州大学学报(自然科学版),2018,30(02):53-62.[doi:10.3969/j.issn.2095-0411.2018.02.008]
 ZHA Jianhua,YANG Yan,FENG Haoyu,et al.Research on Biomass Porous Carbon Process Parameters Based on Response Surface Methodology and Its Application[J].Journal of Changzhou University(Natural Science Edition),2018,30(02):53-62.[doi:10.3969/j.issn.2095-0411.2018.02.008]
点击复制

基于响应曲面法的生物质多孔碳工艺参数研究及应用()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第30卷
期数:
2018年02期
页码:
53-62
栏目:
环境科学与工程
出版日期:
2018-03-31

文章信息/Info

Title:
Research on Biomass Porous Carbon Process Parameters Based on Response Surface Methodology and Its Application
作者:
查建华杨彦冯昊瑜程时袁宁一沈钱勇
常州大学 材料科学与工程学院,江苏 常州 213164; 江苏省光伏科学与工程协同创新中心,江苏 常州 213164
Author(s):
ZHA Jianhua YANG Yan FENG Haoyu CHENG Shi YUAN Ningyi SHEN Qianyong
School of Materials Science and Engineering, Changzhou 213164, China; Changzhou 213164, China; Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou 213164, China
关键词:
响应曲面法 废豆渣 多孔碳 工艺参数 微生物燃料电池
Keywords:
response surface methodology waste bean dregs porous carbon process parameters microbial fuel cells
分类号:
X 703.1
DOI:
10.3969/j.issn.2095-0411.2018.02.008
文献标志码:
A
摘要:
为实现农业废弃物豆渣的资源化利用,将其通过碳化、活化等工艺制备多孔碳。利用响应曲面法分析不同工艺条件(活化温度、时间、比例)对多孔碳性能的影响,并对最优工艺参数进行推导和验证。实验结果表明,活化温度对制备效果影响最大,且活化温度、时间、质量比例设置在700 ℃,2 h,2:1时,多孔碳性能最优。将其应用于微生物燃料电池(MFCs),发现多种类型MFCs采用多孔碳修饰电极均能促进其产电效能。
Abstract:
In order to realize the resource utilization of agricultural residues, porous carbon was prepared from them by carbonization, activation and other processes. The effects of the modification process conditions(activation temperature, time, ratio)were analyzed on porous carbon by response surface method. The optimal process parameters were deduced and validated. The experimental results show that the activation temperature has the remarkable effect. The porous carbon has the best performance at the active temperature when time and ratio were 700 ℃, 2 h and 2:1, respectively. When applied to microbial fuel cells(MFCs), it is found that porous carbon modified electrode can promote the production efficiency of several types of MFCs.

参考文献/References:

[1] WONGSIRIAMNUAY T, TIPPAYAWONG N. Thermogravimetric analysis of giant sensitive plants under air atmosphere[J]. Bioresource Technology, 2010, 101(23): 9314-20.
[2]MAGDZIARZ A, WILK M. Thermal characteristics of the combustion process of biomass and sewage sludge[J]. Journal of Thermal Analysis and Calorimetry, 2013, 114(2): 519-529.
[3]肖波. 生物质热化学转化技术[M]. 北京:冶金工业出版社, 2016.
[4]何玉凤, 钱文珍, 王建凤,等. 废弃生物质材料的高附加值再利用途径综述[J]. 农业工程学报, 2016, 32(15): 1-8.
[5]ZHAO P, SHEN Y, GE S, et al. Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment[J]. ChemInform, 2016, 47(3): 345-367.
[6]谢长城. 2014年中国大豆市场回顾及2015年展望[J]. 中国畜牧杂志, 2015, 51(2): 67-71.
[7]DOLAH B N M, DERAMAN M, OTHMAN M A R, et al. A method to produce binderless supercapacitor electrode monoliths from biomass carbon and carbon nanotubes[J]. Materials Research Bulletin, 2014, 60(60): 10-19.
[8]WHITE R J, ANTONIETTI M, TITIRICI M M. Naturally inspired nitrogen doped porous carbon[J]. Journal of Materials Chemistry, 2009, 19(45): 8645-8650.
[9]DING L, ZOU B, SHEN L, et al.A simple route for consecutive production of activated carbon and liquid compound fertilizer from rice husk[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2014, 446(5): 90-96.
[10]SING K S W, EVERETT D H, HAUL R A W, et al. Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity(recommendations 1984)[J]. Pure and Applied Chemistry, 1984, 57(4): 603-619.
[11]LIU M, GAN L, XIONG W, et al. Nickel-doped activated mesoporous carbon microspheres with partially graphitic structure for supercapacitors[J]. Energy & Fuels, 2013, 27(2): 1168-1173.
[12]MA G, YANG Q, SUN K, et al.Nitrogen-doped porous carbon derived from biomass waste for high-performance supercapacitor[J]. Bioresource Technology, 2015, 197: 137-142.
[13]CHENG P, GAO S, ZANG P, et al. Hierarchically porous carbon by activation of shiitake mushroom for capacitive energy storage[J]. Carbon, 2015, 93: 315-324.
[14]WANG D, GENG Z, LI B, et al.High performance electrode materials for electric double-layer capacitors based on biomass-derived activated carbons[J]. Electrochimica Acta, 2015, 173: 377-384.
[15]CHEN H, LIU D, SHEN Z, et al. Functional biomass carbons with hierarchical porous structure for supercapacitor electrode materials[J]. Electrochimica Acta, 2015, 180: 241-251.
[16]WANG H, YU W, JING S, et al. Biomass derived hierarchical porous carbons as high-performance anodes for sodium-ion batteries[J]. Electrochimica Acta, 2016, 188: 103-110.
[17]LI Y, YU N, YAN P, et al. Fabrication of manganese dioxide nanoplates anchoring on biomass-derived cross-linked carbon nanosheets for high-performance asymmetric supercapacitors[J]. Journal of Power Sources, 2015, 300: 309-317.
[18]RUFFORD T E, HULICOVA-JURCAKOVA D, ZHU Z, et al.Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors[J]. Electrochemistry Communications, 2008, 10(10): 1594-1597.
[19]LI D, LI C, TIAN Y, et al.Influences of impregnation ratio and activation time on ultramicropores of peanut shell active carbons[J]. Materials Letters, 2015, 141(1): 340-343.
[20]AELTERMAN P, FREGUIA S, KELLER J, et al. The anode potential regulates bacterial activity in microbial fuel cells[J]. Applied Microbiology and Biotechnology, 2008, 78(3): 409-418.
[21]贺强礼,刘文斌,杨海君,等. 一株苯酚降解菌的筛选鉴定及响应面法优化其降解[J]. 环境科学学报, 2016, 36(1): 112-123.
[22]WANG Y, ZHOU J, JIANG L, et al.Development of low-cost DDGS-based activated carbons and their applications in environmental remediation and high-performance electrodes for supercapacitors[J]. Journal of Polymers and the Environment, 2015, 23(4): 595-605.
[23]WEI T, WEI X, GAO Y, et al.Large scale production of biomass-derived nitrogen-doped porous carbon materials for supercapacitors[J]. Electrochimica Acta, 2015, 169: 186-194.
[24]SEVILLA M, MOKAYA R. Energy storage applications of activated carbons: supercapacitors and hydrogen storage[J]. Energy & Environmental Science, 2014, 7(4): 1250-1280.
[25]SYCH N V, TROFYMENKO S I, PODDUBNAYA O I, et al.Porous structure and surface chemistry of phosphoric acid activated carbon from corncob[J]. Applied Surface Science, 2012, 261(1): 75-82.
[26]ADHIKARI M P, ADHIKARI R, SHRESTHA R G, et al. Nanoporous activated carbons derived from agro-waste corncob for enhanced electrochemical and sensing performance[J]. Bulletin of the Chemical Society of Japan, 2015, 88(8): 1108-1115.
[27]DING L, ZOU B, LI Y, et al.The production of hydrochar-based hierarchical porous carbons for use as electrochemical supercapacitor electrode materials[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2013, 423(423): 104-111.
[28]TSENG R L, TSENG S K, WU F C, et al. Effects of micropore development on the physicochemical properties of KOH-activated carbons[J]. Journal of the Chinese Institute of Chemical Engineers, 2008, 39(1): 37-47.
[29]WAN M A W D, WAN S W A, SULAIMAN M Z. The effects of carbonization temperature on pore development in palm-shell-based activated carbon[J]. Carbon, 2000, 38(14): 1925-1932.
[30]KUMAGAIS, SATO M, TASHIMA D. Electrical double-layer capacitance of micro- and mesoporous activated carbon prepared from rice husk and beet sugar[J]. Electrochimica Acta, 2013, 114(14): 617-626.
[30]闻斌,魏双,施展,等. 稻壳多孔碳材料的电容性能及模型计算[J]. 高等学校化学学报, 2013, 34(3): 674-678.

备注/Memo

备注/Memo:
收稿日期:2017-08-25。
基金项目:江苏省科技计划产学研前瞻性联合研究项目(BY2016029-17)。
作者简介:查建华(1992—),女,安徽安庆人,硕士生。通信联系人:袁宁一(1966—),E-mail: nyyuan@cczu.edu.cn
更新日期/Last Update: 2018-03-20