[1]朱卫国,张友明,熊雯婧,等.有机近红外电致发光材料研究进展[J].常州大学学报(自然科学版),2018,30(03):1-22.[doi:10.3969/j.issn.2095-0411.2018.03.001]
 ZHU Weiguo,ZHANG Youming,XIONG Wenjing,et al.Research Progress in Near-Infrared Organic Electroluminescent Materials[J].Journal of Changzhou University(Natural Science Edition),2018,30(03):1-22.[doi:10.3969/j.issn.2095-0411.2018.03.001]
点击复制

有机近红外电致发光材料研究进展()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
30
期数:
2018年03期
页码:
1-22
栏目:
材料科学与工程
出版日期:
2018-05-28

文章信息/Info

Title:
Research Progress in Near-Infrared Organic Electroluminescent Materials
作者:
朱卫国1 张友明1熊雯婧12游财发12吴秀刚1朱梦冰1王亚飞1
1. 江苏省环境友好高分子材料重点实验室,江苏省光电热能量转化材料与应用工程实验室,常州大学 材料科学与工程学院,江苏 常州213164; 2. 湘潭大学 化学学院,湖南 湘潭 411105
Author(s):
ZHU Weiguo1 ZHANG Youming1 XIONG Wenjing12 YOU Caifa12 WU Xiugang1 ZHU Mengbing1 WANG Yafei1
1. Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applicaton, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China; 2. College of Chemistry, Xiangtan University, Xiangtan 411105, China
关键词:
有机近红外发光材料 小分子 聚合物 过渡金属配合物 有机电致发光器件 聚合物电致发光器件
Keywords:
near-infrared-emission materials small molecules polymers transition metal complexes organic light-emitting diode polymer light-emitting diode
分类号:
TB 34
DOI:
10.3969/j.issn.2095-0411.2018.03.001
文献标志码:
A
摘要:
近红外发光材料是一类发光波长介于700~2 500 nm的光电功能材料,在光纤通讯、传感、生物活体检测和医学成像等领域具有广阔的应用前景。介绍了有机近红外电致发光材料的分类,小分子近红外电致发光材料、聚合物近红外电致发光材料以及过渡金属配合物近红外电致发光材料的发展现状,指出了发光光谱和发光效率调控途径,阐述了有机近红外电致发光材料的发展前景。
Abstract:
Near-infrared(NIR)emitting materials are a class of photo electronic functional materials, which transmit electromagnetic radiation with an emissive wavelength extending from 700 nm to 2 500 nm. They have attracted much more attention because of their potential applications in optical fiber communication, sensing, biological living detection and medical imaging, etc. The classification and their state of the art of near-infrared(NIR)organic electroluminescent materials of small molecules, polymers and transition metal complexes are introduced in this paper. The approaches to adminstrate luminescence spectra and luminous efficiency about near-infrared materials are presented. The development prospect of organic near-infrared electroluminescent materials is prodicted.

参考文献/References:

[1]WANG Z Y. Near-infrared organic materials and emerging applications[M]. [S.l.]: CRC, 2013.
[2]QIAN G, WANG Z Y. Near-infrared organic compounds and emerging applications[J]. Chemistry An Asian Journal, 2010, 5(5):1006-1029.
[3]XIANG H, CHENG J, MA X, et al. Near-infrared phosphorescence: materials and applications [J]. Chemical Society Reviews, 2013, 42(14):6128-6185.
[4]XU G, ZENG S, ZHANG B, et al. New generation cadmium-free quantum dots for biophotonics and nanomedicine[J]. Chemical Reviews, 2016, 116(19):12234-12327.
[5]BENNETT M A, BHARGAVA S K, CHENG E C, et al. Unprecedented near-infrared emission in diplatinum(Ⅲ)(d7-d7)complexes at room temperature[J]. Journal of the American Chemical Society, 2010, 132(20):7094-7103.
[6]LLORDéS A, GARCIA G, GAZQUEZ J, et al. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites[J]. Nature, 2013, 500(7462):323-326.
[7]SHEN J, CHEN G, OHULCHANSKYY T Y, et al. Upconversion: tunable near infrared to ultraviolet upconversion luminescence enhancement in(α-nayf4:yb,tm)/caf2 core/shell nanoparticles for in situ real-time recorded biocompatible photoactivation [J]. Small, 2013, 9(19):3213-3217.
[8]YAO L, ZHANG S, WANG R, et al. Highly efficient near-infrared organic light-emitting diode based on a butterfly-shaped donor-acceptor chromophore with strong solid-state fluorescence and a large proportion of radiative excitons[J]. Angewandte Chemie International Edition, 2014, 53(8):2119-2123.
[9]YANG R, TIAN R, YAN J, et al. Deep-red electroluminescent polymers:synthesis and characterization of new low-band-gap conjugated copolymers for light-emitting diodes and photovoltaic devices[J]. Macromolecules, 2004, 38(2):244-253.
[10]GANG Q, ZHONG Z, MIN L, et al. Simple and efficient near-infrared organic chromophores for light-emitting diodes with single electroluminescent emission above 1 000 nm[J]. Advanced Materials, 2009, 21(1):111-116.
[11]WANG Y, SUN N, CURCHOD B F E, et al. Tuning the oxidation potential of 2-phenylpyridine-based iridium complexes to improve the performance of bluish and white OLEDs[J]. Journal of Materials Chemistry C, 2016, 4(17):3738-3746.
[12]WERTS M H V, HOFSTRAAT J W, GEURTS F A J, et al. Fluorescein and eosin as sensitizing chromophores in near-infrared luminescent ytterbium(III), neodymium(III)and erbium(III)chelates[J]. Chemical Physics Letters, 1997, 276(3/4):196-201.
[13]CHEN B L, YANG Y, ZAPATA F, et al. Enhanced near-infrared-luminescence in an erbium tetrafluoroterephthalate framework[J]. Inorganic Chemistry, 2012, 45(22):8882-8886.
[14]SHAVALEEV N M, SCOPELLITI R, GUMY F, et al. Modulating the near-infrared luminescence of neodymium and ytterbium complexes with tridentate ligands based on benzoxazole-substituted 8-hydroxyquinolines[J]. Inorganic Chemistry, 2009, 48(7):2908-2918.
[15]STOUWDAM J W, VEGGEL F C J M V. Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+, doped La3+, nanoparticles[J]. Nano Letters, 2002, 2(7):733-737.
[16]WASHBURN B R, DIDDAMS S A, NEWBURY N R, et al. Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared[J]. Optics Letters, 2004, 29(3):250-252.
[17]QIAN G, DAI B, LUO M, et al. Band gap tunable, donor-acceptor-donor charge-transfer heteroquinoid-based chromophores: near infrared photoluminescence and electroluminescence[J]. Chemistry of Materials, 2008, 20(20):6208-6216.
[18]QIAN G, ZHONG Z, LUO M, et al. Synthesis and application of thiadiazoloquinoxaline-containing chromophores as dopants for efficient near-infrared organic light-emitting diodes[J]. Journal of Physical Chemistry C, 2009, 113(4):1589-1595.
[19]YANG Y, FARLEY R T, STECKLER T T, et al. Efficient near-infrared organic light-emitting devices based on low-gap fluorescent oligomers[J]. Journal of Applied Physics, 2009, 106(4):2122.
[20]STEFAN E, KENNETH R G, SHI P J, et al. Donor-acceptor-donor-based π-conjugated oligomers for nonlinear optics and near-IR emission[J]. Chemistry of Materials, 2011, 23(17):3805-3817.
[21]DU X, QI J, ZHANG Z, et al. Efficient non-doped near infrared organic light-emitting devices based on fluorophores with aggregation-induced emission enhancement[J]. Chemistry of Materials, 2012, 24(11):2178-2185.
[22]UOYAMA H, GOUSHI K, SHIZU K, et al. Highly efficient organic light-emitting diodes from delayed fluorescence[J]. Nature, 2012, 492(7428):234-238.
[23]HAN X, BAI Q, YAO L, et al. Highly efficient solid-state near-infrared emitting material based on triphenylamine and diphenylfumaronitrile with an EQE of 2.58% in nondoped organic light-emitting diode[J]. Advanced Functional Materials, 2015, 25(48):7521-7529.
[24]WANG X, ZHOU D, HUANG J, et al. High performance organic ultraviolet photodetector with efficient electroluminescence realized by a thermally activated delayed fluorescence emitter[J]. Applied Physics Letters, 2015, 107(4):043303.
[25]TANAKA H, SHIZU K, MIYAZAKI H, et al. Efficient green thermally activated delayed fluorescence(TADF)from a phenoxazine-triphenyltriazine(PXZ-TRZ)derivative[J]. Chemical Communications, 2012, 48(93):11392-11394.
[26]WANG H, MENG L, SHEN X, et al. Highly efficient orange and red phosphorescent organic light-emitting diodes with low roll-off of efficiency using a novel thermally activated delayed fluorescence material as host[J]. Advanced Materials, 2015, 27(27):4041-4047.
[27]LI X L, XIE G, LIU M, et al. High-efficiency woleds with high color-rendering index based on a chromaticity-adjustable yellow thermally activated delayed fluorescence emitter[J]. Advanced Materials, 2016, 28(23):4614-4619.
[28]YANG Z, MAO Z, XIE Z, et al. Recent advances in organic thermally activated delayed fluorescence materials.[J]. Chemical Society Reviews, 2017, 46(3):915-1016.
[29]WANG S, YAN X, CHENG Z, et al. Highly efficient near-infrared delayed fluorescence organic light emitting diodes using a phenanthrene-based charge-transfer compound[J]. Angewandte Chemie, 2015, 54(44):13068-13072.
[30]NAGATA R, NAKANOTANI H, ADACHI C. Near-infrared electrophosphorescence up to 1.1 μm using a thermally activated delayed fluorescence molecule as triplet sensitizer[J]. Advanced Materials, 2017, 29(5):1604265.
[31]YUAN Y, HU Y, ZHANG Y, et al. Light-emitting diodes: over 10% EQE near-infrared electroluminescence based on a thermally activated delayed fluorescence emitter [J]. Advanced Functional Materials, 2017, 27(26):1700986.
[32]LI C, DUAN R, LIANG B, et al. Deep-Red to Near-infrared thermally activated delayed fluorescence in organic solid films and electroluminescent devices[J]. Angewandte Chemie, 2017, 56:11525-11529.
[33]FAN Z, CHENG C, YU S, et al. Red and near-infrared electroluminescence from organic light-emitting devices based on a soluble substituted metal-free phthalocyanine[J]. Optical Materials, 2009, 31(6):889-894.
[34]SHARBATI M T, PANAHI F, SHOURVARZI A, et al. Near-infrared electroluminescence from organic light emitting diode based on imine oligomer with low turn on voltage[J]. Optik-International Journal for Light and Electron Optics, 2013, 124(1):52-54.
[35]QING L, ZHANG C H. Metal-free phthalocyanine single crystal: solvothermal synthesis and near-infrared electroluminescence[J]. Chinese Chemical Letters, 2016, 27(5):764-768.
[36]BARRY C, THOMPSON L G, MADRIGAL M R P, et al. Donor-acceptor copolymers for red-and near-infrared-emitting polymer light-emitting diodes[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2005, 43(43):1417-1431.
[37]GADISA A, PERZON E, ANDERSSON M R, et al. Red and near infrared polarized light emissions from polyfluorene copolymer based light emitting diodes[J]. Applied Physics Letters, 2007, 90(11):113510.
[38]LI P, FENWICK O, YILMAZ S, et al. Dual functions of a novel low-gap polymer for near infra-red photovoltaics and light-emitting diodes.[J]. Chemical Communications, 2011, 47(31):8820-8822.
[39]STECKLER T T, LEE M J, CHEN Z, et al. Multifunctional materials for ofets, lefets and nir pleds[J]. Journal of Materials Chemistry C, 2014, 2(2):5133-5141.
[40]TREGNAGO G, STECKLER T T, FENWICK O, et al. Thia-and selena-diazole containing polymers for near-infrared light emitting diodes[J]. Journal of Materials Chemistry C, 2015, 3(12):2792-2797.
[41]MURTO P, MINOTTO A, ZAMPETTI A, et al. Triazolobenzothiadiazole-based copolymers for polymer light-emitting diodes: pure near-infrared emission via optimized energy and charge transfer[J]. Advanced Optical Materials, 2016, 4, 2068-2076
[42]姜鸿基, 黄维. 单分子有机电致白光材料及器件[J]. 化学进展, 2008, 20(4):538-547.
[43]SOULTATI A, PAPADIMITROPOULOS G, DAVAZOGLOU D, et al. Near-ir organic light emitting diodes based on porphyrin compounds[C]// International Conference on Transparent Optical Networks. [S.l.]: IEEE, 2015:1-4.
[44]RAJAMALLI P, SENTHILKUMAR N, GANDEEPAN P, et al. A method for reducing the singlet-triplet energy gaps of tadf materials for improving the blue oled efficiency[J]. Acs Applied Materials & Interfaces, 2016, 8(40):27026-27034.
[45]DATA P, PANDER P, OKAZAKI M, et al. Dibenzo[a,j]phenazine-cored donor-acceptor-donor compounds as green-to-red/NIR thermally activated delayed fluorescence organic light emitters[J]. Angewandte Chemie International Edition, 2016, 55(19):5739-5744.
[46]MA B, DJUROVICH P I, YOUSUFUDDIN M, et al. Phosphorescent platinum dyads with cyclometalated ligands: synthesis, characterization, and photophysical studies[J]. Journal of Physical Chemistry C, 2008, 112(21):1578-1591.
[47]VISBAL R, GIMENO M C. N-heterocyclic carbene metal complexes: photoluminescence and applications[J]. Chemical Society Reviews, 2014, 43(10):3551-3574.
[48]YANG X, YAO C, ZHOU G. Highly efficient phosphorescent materials based on platinum complexes and their application in organic light-emitting devices(OLEDs)[J]. Platinum Metals Review, 2013, 57(1):2-16.
[49]DOISTAU B, TRON A, DENISOV S A, et al. Terpy(pt-salphen)2 switchable luminescent molecular tweezers[J]. Chemistry-A European Journal, 2014, 20(48):15799-15807.
[50]YANG X, ZHOU G, WONG W Y. Functionalization of phosphorescent emitters and their host materials by main-group elements for phosphorescent organic light-emitting devices[J]. Chemical Society Reviews, 2015, 44(23):8484-8575.
[51]MA Y, LIANG H, ZENG Y, et al. Phosphorescent soft salt for ratiometric and lifetime imaging of intracellular ph variations[J]. Chemical Science, 2016, 7(5):3338-3346.
[52]ZHANG B, TAN G, LAM C S, et al. High efficiency single emissive layer white organic light-emitting diodes based on solution-processed dendritic host and new orange-emitting iridium complex[J]. Advanced Materials, 2012, 24(14):1873-1877.
[53]HO C L, BING Y, ZHANG B, et al. Metallophosphors of iridium(Ⅲ)containing borylated oligothiophenes with electroluminescence down to the near-infrared region[J]. Journal of Organometallic Chemistry, 2013, 730(4):144-155.
[54]BERENGUER J R, áLVARO DíEZ, GARCíA A, et al. Remarkable influence of the cyclometalating ligand on the nuclearity and properties of heterobridged(μ-X)(μ-C≡CR)platinum(Ⅱ)complexes[J]. Organometallics, 2011, 30(6):1646-1657.
[55]LALINDE E, MORENO M T, RUIZ S, et al. Synthesis, structural, and photophysical studies of phenylquinoline and phenylquinolinyl alkynyl based Pt(Ⅱ)complexes[J]. Organometallics, 2014, 33(12):3078-3090.
[56]FUKAGAWA H, SHIMIZU T, HANASHIMA H, et al. Highly efficient and stable red phosphorescent organic light-emitting diodes using platinum complexes[J]. Advanced Materials, 2012, 24(37):5099-5103.
[57]VEZZU D A, DEATON J C, JONES J S, et al. Highly luminescent tetradentate bis-cyclometalated platinum complexes: design, synthesis, structure, photophysics and electroluminescence application[J]. Inorganic Chemistry, 2010, 49(11):5107-5119.
[58]YANG C J, YI C, XU M, et al. Red to Near-infrared electrophosphorescence from a platinum complex coordinated with 8-hydroxyquinoline[J]. Applied Physics Letters, 2006, 89(23):233506.
[59]XIANG H F, XU Z X, ROY V A L, et al. Deep-red to near-infrared electrophosphorescence based on bis(8-hydroxyquinolato)platinum(Ⅱ)complexes[J]. Applied Physics Letters, 2008, 92(16):163305.
[60]YU J, HE K, LI Y, et al. A novel near-infrared-emitting cyclometalated platinum(Ⅱ)complex with donor-acceptor-acceptor chromophores[J]. Dyes & Pigments, 2014, 107(2):146-152.
[61]LY K T, CHENCHENG R W, LIN H W, et al. Near-infrared organic light-emitting diodes with very high external quantum efficiency and radiance[J]. Nature Photonics, 2017, 11, 63-68.
[62]JR M G, MCGUIRE M C, MCMILLIN D R. Platinum(II)polypyridines: a tale of two axes[J]. Coordination Chemistry Reviews, 2010, 254(21/22):2574-2583.
[63]RAUSCH A F, MURPHY L, WILLIAMS J A G, et al. Improving the performance of Pt(Ⅱ)complexes for blue light emission by enhancing the molecular rigidity[J]. Inorganic Chemistry, 2011, 51(1):312-319.
[64]COCCHI M, KALINOWSKI J, VIRGILI D, et al. Excimer-based red/near-infrared organic light-emitting diodes with very high quantum efficiency[J]. Applied Physics Letters, 2008, 92(11):113302.
[65]ROSSI E, MURPHY L, BROTHWOOD P L, et al. Cyclometallated platinum(Ⅱ)complexes of 1,3-di(2-pyridyl)benzenes: tuning excimer emission from red to near-infrared for NIR-OLEDs[J]. Journal of Materials Chemistry C, 2011, 21(39):15501-15510.
[66]ROSSI E, COLOMBO A, DRAGONETTI C, et al. From red to near infra-red oleds: the remarkable effect of changing from X =-Cl to NCS in a cyclometallated [Pt(NCN)X]complex {N^C^N=5-mesityl-1,3-di-(2-pyridyl)-benzene[J]. Chemical Communications, 2012, 48(26):3182-3184.
[67]NISIC F, COLOMBO A, DRAGONETTI C, et al. Platinum(Ⅱ)complexes with cyclometallated 5-p-delocalized-donor-1,3-di(2-pyridyl)benzene ligands as efficient phosphors for NIR-OLEDs[J]. Journal of Materials Chemistry C, 2013, 2(10):1791-1800.
[68]COUPET B, PINCHUK S. Highly efficient, near-infrared electrophosphorescence from a Pt-metalloporphyrin complex[J]. Angewandte Chemie, 2007, 46(7):1109-1112.
[69]SUN Y, BOREK C, HANSON K, et al. Photophysics of pt-porphyrin electrophosphorescent devices emitting in the near infrared[J]. Applied Physics Letters, 2007, 90(21):213503.
[70]SOMMER J R, FARLEY R T, GRAHAM K R, et al. Efficient near-infrared polymer and organic light-emitting diodes based on electrophosphorescence from(tetraphenyltetranaphtho [2,3]porphyrin)platinum(Ⅱ)[J]. Acs Applied Materials & Interfaces, 2009, 1(2):274-278.
[71]GRAHAM K R, YANG Y, SOMMER J R, et al. Extended conjugation platinum(Ⅱ)porphyrins for use in near-infrared emitting organic light emitting diodes[J]. Chemistry of Materials, 2015, 23(24):5305-5312.
[72]PENG T, LI G, YE K, et al. Highly efficient phosphorescent OLEDs with host-independent and concentration-insensitive properties based on a bipolar iridium complex[J]. Journal of Materials Chemistry C, 2013, 1(16):2920-2926.
[73]YU J, TAN H, MENG F, et al. Benzotriazole-containing donor-acceptor-acceptor type cyclometalated iridium(Ⅲ)complex for solution-processed near-infrared polymer light emitting diodes[J]. Dyes & Pigments, 2016, 131:231-238.
[74]WILLIAMS E L, LI J, JABBOUR G E. Organic light-emitting diodes having exclusive near-infrared electrophosphorescence[J]. Applied Physics Letters, 2006, 89(8):083506.
[75]KIM H J, KIM M J, PARK H D, et al. Near-IR electromer emission from new ambipolar carbazole containing phosphorescent pendrimer based organic light emitting diode[J]. Synthetic Metals, 2010, 160(17/18):1994-1999.
[76]HO C C, CHEN H F, HO Y C, et al. Phosphorescent sensitized fluorescent solid-state near-infrared light-emitting electrochemical cells[J]. Physical Chemistry Chemical Physics, 2011, 13(39):17729-17736.
[77]TAO R, QIAO J, ZHANG G, et al. Efficient near-infrared-emitting cationic iridium complexes as dopants for OLEDs with small efficiency roll-off[J]. Journal of Physical Chemistry C, 2012, 116(21):11658-11664.
[78]TAO R, QIAO J, ZHANG G, et al. High-efficiency near-infrared organic light-emitting devices based on an iridium complex with negligible efficiency roll-off[J]. Journal of Materials Chemistry C, 2013, 1(39):6446-6454.
[79]QIAO J, XIN L, XUE J, et al. Efficient near-infrared-emitting cationic iridium complexes based on highly conjugated cyclometalated benzo[g]phthalazine derivatives[J]. RSC Advances, 2015, 5(53):42354-42361.
[80]CAO X, MIAO J, ZHU M, et al. Near-infrared polymer light-emitting diodes with high efficiency and low efficiency roll-off by using solution-processed iridium(Ⅲ)phosphors[J]. Chemistry of Materials, 2015, 27(1):96-104.
[81]KESARKAR S, MRóZ W, PENCONI M, et al. Near-IR emitting iridium(Ⅲ)complexes with heteroaromatic β-diketonate ancillary ligands for efficient solution-processed OLEDs: structure-property correlations[J]. Angewandte Chemie, 2016, 55(8):2714-2718.
[82]QUICI S, CAVAZZINI M, MARZANNI G, et al. Visible and near-infrared intense luminescence from water-soluble lanthanide [Tb(III), Eu(III), Sm(III), Dy(III), Pr(III), Ho(III), Yb(III), Nd(III), Er(III)]complexes[J]. Inorganic Chemistry, 2005, 44(3):529-537.
[83]UTOCHNIKOVA V V, KALYAKINA A S, BUSHMARINOV I S, et al. Lanthanide 9-anthracenate: solution processable emitters for efficient purely NIR emitting host-free OLED[J]. Journal of Materials Chemistry C, 2016, 4, 9848-9855.
[84]LIAO J L, CHI Y, YEH C C, et al. Near infrared-emitting tris-bidentate os phosphors: control of excited state characteristics and fabrication of OLEDs[J]. Journal of Materials Chemistry C, 2015, 3(19):4910-4920.
[85]LEE T C, HUNG J Y, CHI Y, et al. Rational design of charge-neutral, near-infrared-emitting osmium(Ⅱ)complexes and OLED fabrication[J]. Advanced Functional Materials, 2010, 19(16):2639-2647.
[86]LIAO J L, CHI Y, LIU S H, et al. Os(II)Phosphors with near-infrared emission induced by ligand-to-ligand charge transfer transition[J]. Inorganic Chemistry, 2014, 53(17):9366-9374.
[87]CHEN J, LIU J, YAO H, et al. Preparation and application of strong near-infrared emission phosphor Sr3SiO5:Ce3+,Al3+,Nd3+[J]. Journal of the American Ceramic Society, 2015, 98(6):1836-1841.
[88]XUE J, LI C, XIN L, et al. High-efficiency and low efficiency roll-off near-infrared fluorescent OLEDs through triplet fusion[J]. Chemical Science, 2016, 7(4):2888-2895.
[89]WU X, LIU Y, WANG Y, et al. Highly efficient near-infrared emission from binuclear cyclo-metalated platinum complexes bridged with 5-(4-octyloxyphenyl)-1,3,4-oxadiazole-2-thiol in PLEDs[J]. Organic Electronics, 2012, 13(13):932-937.
[90]XIONG W, MENG F, TAN H, et al. Dinuclear platinum complexes containing aryl-isoquinoline and oxadiazole-thiol with an efficiency of over 8.8%: in-depth investigation of the relationship between their molecular structure and near-infrared electroluminescent properties in PLEDs[J]. Journal of Materials Chemistry C, 2016, 4: 6007-6015.
[91]SU N, MENG F, CHEN J, et al. Near-infrared emitting pyrazole-bridged binuclear platinum complexes: synthesis, photophysical and electroluminescent properties in PLEDs[J]. Dyes and Pigments, 2016, 128:68-74.
[92]SU N, MENG F, WANG P, et al. Near-infrared emission from binuclear platinum(Ⅱ)complexes containing pyrenylpyridine and pyridylthiolate units: synthesis, photo-physical and electroluminescent properties[J]. Dyes and Pigments, 2016, 138:162-168.
[93]DEDEIAN K, DJUROVICH P I, GARCES F O, et al. A new synthetic route to the preparation of a series of strong photoreducing agents: fac-tris-ortho-metalated complexes of iridium(Ⅲ)with substituted 2-phenylpyridines[J]. Cheminform, 1991, 22(29):1685-1687.
[94]LAMANSKY S, DJUROVICH P, MURPHY D, et al. Highly phosphorescent bis-cyclometalated iridium complexes: synthesis, photophysical characterization, and use in organic light emitting diodes[J]. Journal of the American Chemical Society, 2001, 123(18):4304.
[95]MI B X. Light-Emitting Tridentate Cyctometalated platinum(Ⅱ)complexes containing &sigma-alkynyl auxiliaries: tuning of photo- and electrophosphorescence[J]. Journal of the American Chemical Society, 2004, 126(15): 4958-4971.
[96]BROOKS J, BABAYAN Y, LAMANSKY S, et al. Synthesis and characterization of phosphorescent cyclometalated platinum complexes[J]. Inorganic Chemistry, 2002, 41(12):3055-3066.
[97]LOWRY M S, BERNHARD S. Synthetically tailored excited states: phosphorescent, cyclometalated iridium(Ⅲ)complexes and their applications[J]. Chemistry-A European Journal, 2006, 12(31):7970.
[98]PSCHIRER N G, KOHL C, NOLDE F, et al. Pentarylene-and hexarylenebis(dicarboximide)s: near-infrared-absorbing polyaromatic dyes[J]. Angewandte Chemie International Edition, 2006, 45(9):1401.
[99]ZHOU L, CAI P, FENG Y, et al. Synthesis and photophysical properties of water-soluble sulfonato-Salen-type Schiff bases and their applications of fluorescence sensors for Cu2+ in water and living cells[J]. Analytica Chimica Acta, 2012, 735(6092):96-106.
[100]ZHOU L, FENG Y, CHENG J, et al. Simple, selective, and sensitive colorimetric and ratiometric fluorescence/phosphorescence probes for platinum(II)based on Salen-type Schiff bases[J]. RSC Advances, 2012, 2(28):10529-10536.
[101]YERSIN H. Highly efficient OLEDs with phosphorescent materials[M]. [S.l.]: John Wiley & Sons, 2008.
[102]FENG Y, CHENG J, ZHOU L, et al. Ratiometric optical oxygen sensing: a review in respect of material design[J]. Analyst, 2012, 137(21):4885.
[103]KOZHEVNIKOV D N, KOZHEVNIKOV V N, SHAFIKOV M Z, et al. Phosphorescence vs fluorescence in cyclometalated platinum(Ⅱ)and iridium(Ⅲ)complexes of(oligo)thienylpyridines[J]. Inorganic Chemistry, 2011, 50(8):3804-3815.
[104]MI B X. Light-emitting tridentate cyctometalated platinum(Ⅱ)complexes containing &sigma-alkynyl auxiliaries: tuning of photo- and electrophosphorescence[J]. Journal of the American Chemical Society Jacs, 2004, 126(15): 4958-4971.
[105]SUN Y, WANG S. Conjugated triarylboryl donor-acceptor systems supported by 2,2’-bipyridine: metal chelation impact on intraligand charger transfer emission, electron accepting ability, and “turn-on” fluoride sensing[J]. Inorganic Chemistry, 2009, 48(8): 3755-3767.
[106]MA B, LI J, DJUROVICH P I, et al. Synthetic control of Pt … Pt separation and photophysics of binuclear platinum complexes[J]. Journal of the American Chemical Society, 2005, 127(1):28-29.

备注/Memo

备注/Memo:
收稿日期:2017-11-07。
基金项目:国家自然科学基金资助项目(U1663229,51473140)。
作者简介:朱卫国(1964—),男,湖南株州人,博士,教授,博士生导师。E-mail:zhuwg18@126.com
更新日期/Last Update: 2018-05-20