[1]贾旭光,ZHANG Tian,LIN Ziyun,等.自组装固体硅量子点中的粒径分布[J].常州大学学报(自然科学版),2019,31(05):36-41.[doi:10.3969/j.issn.2095-0411.2019.05.006]
 JIA Xuguang,ZHANG Tian,LIN Ziyun,et al.Size Distribution in Self Assembled Solid State Si Quantum Dots[J].Journal of Changzhou University(Natural Science Edition),2019,31(05):36-41.[doi:10.3969/j.issn.2095-0411.2019.05.006]
点击复制

自组装固体硅量子点中的粒径分布()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第31卷
期数:
2019年05期
页码:
36-41
栏目:
材料科学与工程
出版日期:
2019-09-28

文章信息/Info

Title:
Size Distribution in Self Assembled Solid State Si Quantum Dots
文章编号:
2095-0411(2019)05-0036-06
作者:
贾旭光1 ZHANG Tian2 LIN Ziyun2 CONIBEER Gavin2
(1. 常州大学 材料科学与工程学院,江苏 常州 213164; 2. 新南威尔士大学 光伏与可再生能源学院,澳大利亚 悉尼 2052)
Author(s):
JIA Xuguang1 ZHANG Tian2 LIN Ziyun2 CONIBEER Gavin2
(1. School of Materials Science & Engineering, Changzhou University, Changzhou 213164, China; 2. School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia)
关键词:
硅量子点 粒径分布 光伏 光致荧光
Keywords:
silicon quantum dots size distribution photovoltaics photoluminescence
分类号:
TK 8
DOI:
10.3969/j.issn.2095-0411.2019.05.006
文献标志码:
A
摘要:
提出了一个用来定量分析胶体硅量子点光致荧光光谱的模型,得到量子点的粒径分布,并将此方法应用于固体硅量子点材料粒径分布的分析。结果表明:与胶体硅量子点相比,固体样品中硅量子点粒径分布更宽。这可能是由于固体样品硅在结晶过程中水平方向缺乏约束,因此形成的量子点为椭球形。纳米硅中粒径分布太宽会导致材料带隙分布变宽。减少量子约束效应,限制了这些材料在实际中的应用。
Abstract:
In the previous work, a model was proposed to quantitatively explain the PL spectrum of colloidal Si quantum dot(QD)by inducing the quantum confinement effect and particle size distribution. In this work, this method is adapted for size distribution analysis of QDs in a solid matrix. Results shows that the size distribution of QDs in these solid samples is more widely spread compared to colloidal one. The possible reason is the lack of constraint in horizontal directions in these samples and thus the QDs become ellipsoidal. The wide distribution of QD size will cause the spread of bandgap and reduce the quantum confinement effect which limits the practical application of such materials.

参考文献/References:

[1]CONIBEER G, GREEN M, CORKISH R, et al. Silicon nanostructures for third generation photovoltaic solar cells[J]. Thin Solid Films, 2006, 511/512: 654-662.
[2]CHO E C, GREEN M A, CONIBEER G, et al. Silicon quantum dots in a dielectric matrixfor all-silicon tandem solar cells[J]. Advances in OptoElectronics, 2007, 2007: 1-11.
[3]GREEN M A. Third generation photovoltaics: ultra-high conversion efficiency at low cost[J]. Progress in Photovoltaics: Research and Applications, 2001, 9(2): 123-135.
[4]JIA X G, PUTHEN-VEETTIL B, XIA H Z, et al. All-silicon tandem solar cells: Practical limits for energy conversion and possible routes for improvement[J]. Journal of Applied Physics, 2016, 119(23): 233102.
[5]ZACHARIAS M, HEITMANN J, SCHOLZ R, et al.Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach[J]. Applied Physics Letters, 2002, 80(4): 661-663.
[6]CHO E C, PARK S, HAO X J, et al. Silicon quantum dot/crystalline silicon solar cells[J]. Nanotechnology, 2008,19(24): 245201.
[7]KOURKOUTIS L F, HAO X J, HUANG S J, et al. Three-dimensional imaging for precise structural control of Si quantum dot networks for all-Si solar cells[J]. Nanoscale, 2013, 5(16): 7499-7504.
[8]TAN T T, SELVAN S T, ZHAO L, et al. Size control, shape evolution, and silica coating of near-infrared-emitting PbSe quantum dots[J]. Chemistry of Materials, 2007, 19(13): 3112-3117.
[9]BORCHERT H, SHEVCHENKO E V, ROBERT A, et al. Determination of nanocrystal sizes: a comparison of TEM, SAXS, and XRD studies of highly monodisperse CoPt3 particles[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2005, 21(5): 1931-1936.
[10]JIA X, LIN Z, ZHANG T, et al. Accurate analysis of the size distribution and crystallinity of boron doped Si nanocrystals via Raman and PL spectra[J]. RSC Advances, 2017, 7(54): 34244-34250.
[11]JIA X G, ZHANG P F, LIN Z Y, et al. Accurate determination of the size distribution of Si nanocrystals from PL spectra[J]. RSC Advances, 2015, 5(68): 55119-55125.
[12]KISS L B, S?DERLUND J, NIKLASSON G A, et al. New approach to the origin of lognormal size distributions of nanoparticles[J]. Nanotechnology, 1999, 10(1): 25-28.
[13]S?DERLUND J, KISS L B, NIKLASSON G A, et al. Lognormal size distributions in particle growth processes without coagulation[J]. Physical Review Letters, 1998, 80(11): 2386.
[14]READ A J, NEEDS R J, NASH K J, et al. First-principles calculations of the electronic properties of silicon quantum wires[J]. Physical Review Letters, 1992, 69(8): 1232-1235.
[15]VAN BUUREN T, DINH L N, CHASE L L, et al. Changes in the electronic properties of Si nanocrystals as a function of particle size[J]. Physical Review Letters, 1998, 80(17): 3803-3806.

备注/Memo

备注/Memo:
收稿日期:2019-03-14。
作者简介:贾旭光(1988—),男,山西朔州人,博士,讲师。E-mail: x.jia@cczu.edu.cn
更新日期/Last Update: 2019-09-30