[1]王伟辰,吕凤霞,袁惠新.空化分离油砂装置空化成因及压力影响分析[J].常州大学学报(自然科学版),2019,31(05):70-76.[doi:10.3969/j.issn.2095-0411.2019.05.011]
 WANG Weichen,LYU Fengxia.,YUAN Huixin..Analysis on Cavitation Cause and Pressure Effect of Hydraulic Cavitation Separation Oil Sand Unit[J].Journal of Changzhou University(Natural Science Edition),2019,31(05):70-76.[doi:10.3969/j.issn.2095-0411.2019.05.011]
点击复制

空化分离油砂装置空化成因及压力影响分析()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第31卷
期数:
2019年05期
页码:
70-76
栏目:
机械制造及其自动化
出版日期:
2019-09-28

文章信息/Info

Title:
Analysis on Cavitation Cause and Pressure Effect of Hydraulic Cavitation Separation Oil Sand Unit
文章编号:
2095-0411(2019)05-0070-07
作者:
王伟辰1吕凤霞12袁惠新12
(1.常州大学 机械工程学院,江苏 常州 213164; 2.江苏省绿色过程装备重点实验室(常州大学),江苏 常州 213164)
Author(s):
WANG Weichen1 LYU Fengxia1.2 YUAN Huixin1.2
(1. School of Mechanical Engineering, Changzhou University, Changzhou 213164, China; 2. Jiangsu Key Laboratory of Green Process Equipment, Changzhou University, Changzhou 213164, China)
关键词:
空化 油砂分离 数值模拟
Keywords:
cavitation oil sand separation numerical simulation
分类号:
TE 65
DOI:
10.3969/j.issn.2095-0411.2019.05.011
文献标志码:
A
摘要:
空化分离油砂可有效地消除传统分离方法对高能耗、溶剂、表面活性剂的依赖,具有较大的研究潜力。文中采用CFD技术对一种油砂分离用水力空化装置内部流域进行数值模拟,阐述了空化的成因和压力对装置内空化的影响。结果表明:该装置所产生的空化主要由射流和周围流域的速度梯度所引起的涡流产生,同时空化汽泡被裹挟流向下游扩大了空化范围; 较高的主流压力和喷嘴压力产生更好的空化效果,当喷嘴压力大于某一定值后空化范围基本稳定; 而低压力出口其空化范围更大,空化效果更好。
Abstract:
Oil sand separation by cavitation can effectively eliminate the dependence of traditional separation methods on high energy consumption, solvent and surfactant.In this paper, a CFD technique is used to simulate the watersheds in a hydrodynamic cavitation device for oil sand separation,the causes of cavitation and the influence of pressure on cavitation in the plant are expounded.The results show that: the cavitation produced by the device is mainly caused by eddy current caused by jet and velocity gradient of the surrounding watershed, and the cavitation bubble is entrapped downstream to expand the cavitation range.; higher mainstream pressure and nozzle pressure produced better cavitation effect, and the cavitation range was basically stable when the nozzle pressure was greater than 1.9 MPa; the low pressure outlet has greater cavitation and better cavitation effect.

参考文献/References:

[1]黄剑雄.油砂资源现状及其开采分离方法浅谈[J].广州化工,2011(8):24-26.
[2]张春贺,郑秀芬.油砂新的经济增长推进剂[J].中国矿业,2007,16(3): 37-39.
[3]许修强,郑德温,徐金明,等.我国油砂分离技术研究进展[J].现代化工,2010(8):12 -17.
[4]李斌,尹晓君,张洋勇,等.油砂分离技术研究进展[J].广州化工,2014(8):32-34.
[5]何冰,张会成,王盼盼,等.溶剂抽提法分离印尼油砂的实验研究[J].当代化工,2012(11):1177-1181.
[6]许修强,王红岩,郑德温,等.热解干馏法测定油砂的含油率[J].石油炼制与化工,2008(12): 51-53.
[7]GGOATE P R. Cavitational reactors for process intensification of chemical processing applications: a critical review[J]. Chemical Engineering and Processing, 2008, 47(4): 515-527.
[8]BUKHARIN N,VINOGRADOV O,HUGO R, et al. Investigation of cavitating jet effect on bitumen separation from oil sands[J]. Petroleum Science and Technology, 2012, 30(13): 1317-1323.
[9]王萍辉.空化射流在管道清洗中的应用[J].电力科学与工程,2002,18(4):21-24.
[10]马东军,李根生,金磊,等.脉冲空化多孔喷嘴破岩效果试验研究[J].中国石油大学学报(自然科学版),2015,39(1):83-87.
[11]朱孟府,曾艳,邓橙,等.水力空化在水处理中的应用与研究进展[J].环境科学与技术,2010(2):445 -449.
[12]BUKHARIN N.Application of cavitating jets to bitumen separation from oil sands[D]. Calgary: University of Calgary, 2011: 1-123.
[13]BUKHARIN N,VINOGRADOV O. Investigation of the effect of slurry density on a bitumen separation process based on cavitating jets[J]. Industrial and Engineering Chemistry Research, 2012, 51(17): 6175-6183.
[14]邹旻,孔德昂,朱英杰,等.非接触式余弦转子泵及流场数值分析[J].常州大学学报(自然科学版),2018,30(4):59-63.
[15]刘文明,孙浩然,刘雪东,等.操作参数对拉瓦尔喷管空化强度的影响[J].常州大学学报(自然科学版),2016,28(5):60-64.
[16]林兴华,张敏革,秦青,等.空化射流流场数值模拟的研究进展[J].化工进展,2015,34(4):921-929.
[17]卢义玉,王晓川,康勇,等.缩放型喷嘴产生的空化射流流场数值模拟[J].中国石油大学学报(自然科学版),2009,33(6):57-60.
[18]胡隐樵,陈晋北,左洪超,等.湍流强度定理和湍流发展的宏观机制[J].中国科学(D辑:地球科学),2007(2): 272-281.

备注/Memo

备注/Memo:
收稿日期:2018-07-09。
基金项目:国家自然科学基金资助项目(21676031)。
作者简介:王伟辰(1994—),男,安徽合肥人,硕士生。通信联系人:吕凤霞(1978—),E-mail: fengx0701@163.com
更新日期/Last Update: 2019-09-30