[1]郑 静,苏 丹,李绍念,等.自噬在皮质酮致HT-22细胞损伤中的作用[J].常州大学学报(自然科学版),2020,32(02):80-86.[doi:10.3969/j.issn.2095-0411.2020.02.011]
 ZHENG Jing,SU Dan,LI Shaonian,et al.Role of Autophagy in Corticosterone-Induced Neurotoxicity in HT-22 Cells[J].Journal of Changzhou University(Natural Science Edition),2020,32(02):80-86.[doi:10.3969/j.issn.2095-0411.2020.02.011]
点击复制

自噬在皮质酮致HT-22细胞损伤中的作用()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第32卷
期数:
2020年02期
页码:
80-86
栏目:
生物医学工程
出版日期:
2020-03-28

文章信息/Info

Title:
Role of Autophagy in Corticosterone-Induced Neurotoxicity in HT-22 Cells
文章编号:
2095-0411(2020)02-0080-07
作者:
郑 静1苏 丹2李绍念1孙 娟1潘玉琪1李 欢1柳 丽1宋国强1
(1.常州大学 制药与生命科学学院,江苏 常州 213164; 2.常州市第二人民医院,江苏 常州 213003)
Author(s):
ZHENG Jing1 SU Dan2 LI Shaonian1 SUN Juan1 PAN Yuqi1 LI Huan1 LIU Li1 SONG Guoqiang1
(1.School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou 213164, China; 2.Changzhou No.2 People's Hospital, Changzhou 213003, China)
关键词:
皮质酮 自噬 细胞损伤
Keywords:
corticosterone autophagy cell injury
分类号:
R 964
DOI:
10.3969/j.issn.2095-0411.2020.02.011
文献标志码:
A
摘要:
主要探讨自噬在皮质酮(CORT)诱导小鼠海马神经元HT-22细胞损伤中的作用。以不同浓度CORT(0,50,100,200 μmol·L-1)处理HT-22细胞24 h或200 μmol·L-1 CORT处理HT-22细胞不同时间(0,4,8,12,24,48 h)后,镜下观察细胞形态,MTS法检测细胞活力,Western blot检测自噬标志物LC3及p62蛋白表达; 同时进一步考察自噬诱导剂Rapamycin和自噬抑制剂3-Methyladenine(3-MA)对CORT神经毒性的影响。结果发现CORT可呈剂量和时间依赖性地降低HT-22细胞活力并诱导细胞发生明显的形态学变化。与对照组相比,随着CORT浓度的增加,自噬体形成标志蛋白LC3Ⅱ/LC3Ⅰ的比值显著升高,自噬底物蛋白p62的表达并无明显变化。然而,200 μmol·L-1 CORT作用于HT-22细胞不同时间后,LC3Ⅱ/LC3Ⅰ比值均升高,在48 h时最为显著(P<0.01),同时p62的表达呈现先增加后逐步减少趋势。此外,与CORT组比,诱导自噬加重了CORT对HT-22细胞的损伤,而抑制自噬则减轻了CORT的细胞毒性。研究表明皮质酮增加了HT-22细胞的自噬水平,自噬介导了皮质酮诱导的HT-22细胞损伤,抑制自噬可以减轻皮质酮的神经毒性。
Abstract:
This article was prompted to evaluate whether autophagy was involved in corticosterone(CORT)-induced HT-22 cells injury. HT-22 cells were treated with different concentrations of CORT(0, 50, 100, 200 μmol·L-1)for 24 h or 200 μmol·L-1 CORT for different time(0, 4, 8, 12, 24, 48 h)respectively. The cell morphologies were observed by inverted microscope, the cell viabilities were detected by MTS assay and the expressions of autophagy markers LC3 and p62 were detected by Western blot. The effects of autophagy on CORT-induced neurotoxicity were also determined after 3-Methyladenine(3-MA)and Rapamycin treatment. CORT had a dose and time dependent effect on cell viabilities and induced obvious morphological changes in cells. Compared with the control group, the ratio of LC3II/LC3I was significantly increased with increasing concentrations of CORT, while p62 expression did not show any significant changes. Additionally, with increasing exposure time of 200 μmol·L-1 CORT, the ratio of LC3II/LC3I was also significantly increased with the highest level at 48 h after treatment(P<0.01), while p62 expression was increased at 4, 8, 12 h and then gradually decreased at 24 and 48 h. Moreover, co-treatment with autophagy inducer enhanced the neurotoxicity of CORT and co-treatment with autophagy inhibitor allievated the neurotoxicity of CORT. These results indicated that CORT increased the level of autophagy in HT-22 cells and autophagy mediated the CORT-induced cytotoxicity. Inhibition of autophagy could reduce the neurotoxicity of CORT.

参考文献/References:

[1]SIVAPRIYA R M, CIDLOWSKI J A. Corticosteroids mechanisms of action in health and disease[J]. Rheum Dis Clin N Am, 2016, 42(1):15-31.
[2]KOOLHAAS J M, BARTOLOMUCCI A, BUWALDA B, et al. Stress revisited: a critical evaluation of the stress concept[J]. Neurosci Biobehav R, 2011, 35(5):1291-1301.
[3]TOMOSHIGE K. Stress, glucocorticoid hormones, and hippocampal neural progenitor cells: implications to mood disorders[J]. Front Physiol, 2015, 6:230-239.
[4]BREMNER J D. Does stress damage the brain[J]. Biol Psychiat, 2005, 45(7): 797-805.
[5]HOUGARDY D M, PETERSON G M, BLEASEL M D, et al. Is enough attention being given to the adverse effects of corticosteroid therapy[J]. J Clin Pharm Ther, 2000, 25(3):227-234.
[6]NAKATANI Y, TSUJI M, AMANO T, et al. Neuroprotective effect of yokukansan against cytotoxicity induced by corticosterone on mouse hippocampal neurons[J]. Phytomedicine, 2014, 21(11): 1458-1465.
[7]DELAIR B, GIVALOIS L, BRUREAU A, et al. Deregulation of hypothalamic-pituitary-adrenal axis functions in an Alzheimer's disease rat model[J]. Neurobiol Aging, 2013, 34(5):1426-1439.
[8]BRUNDEN K R, IBA M, CARROLL J C, et al. Chronic stress exacerbates tau pathology, neurodegeneration, and cognitive performance through a corticotropin-releasing factor receptor-dependent mechanism in a transgenic mouse model of tauopathy[J]. J Neurosci, 2011, 31(40):14436-14449.
[9]TAKEDA H, TSUJI M, MATSUMIYA T. Formation mechanisms of stress adaptation: role of functional coupling of glucocorticoids and brain serotonergic nervous system[J]. J Psychopharmacol, 2000, 20(3):83-91.
[10]PATEL N V, FINCH C E. The glucocorticoid paradox of caloric restriction in slowing brain aging[J]. Neurobiol Aging, 2002, 23(5):707-717.
[11]ZHANG Z, MIAH M, CULBRETH M, et al. Autophagy in neurodegenerative diseases and metal neurotoxicity[J]. Neurochem Res, 2016, 41(1/2):409-422.
[12]GUO F, LIU X Y, CAI H B, et al. Autophagy in neurodegenerative diseases: pathogenesis and therapy[J]. Brain Pathology, 2017, 28(1):3-13.
[13]PANTOVIC A, KRSTIC A, JANJETOVIC K, et al. Coordinated time-dependent modulation of AMPK/Akt/mTOR signaling and autophagy controls osteogenic differentiation of human mesenchymal stem cells[J]. Bone, 2013, 52(1):524-531.
[14]ZHANG J B, CAO R, CAI T J, et al. The role of autophagy dysregulation in manganese-induced dopaminergic neurodegeneration[J]. Neurotox Res, 2013, 24(4):478-490.
[15]AHMED I, LIANG Y D, SCHOOLS S, et al. Development and characterization of a new Parkinson's disease model resulting from impaired autophagy[J]. J Neurosci, 2012, 32(46):16503-16509.
[16]LI Z Y, WU Y F, XUX C, et al. Autophagy as a double-edged sword in pulmonary epithelial injury: a review and perspective[J]. Am J Physiol-Lung C, 2017, 313(2):207-217.
[17]CHEN Y, REX C S, RICE C J, et al. Correlated memory defects and hippocampal dendritic spine loss after acute stress involve corticotropin-releasing hormone signaling[J]. P Natl Acad Sci USA, 2010, 107(29):13123-13128.
[18]BO X C, XU Y R, CHENG X R, et al. Effects of 5-h multimodal stress on the molecules and pathways involved in dendritic morphology and cognitive function[J]. Neurobiol Learn Mem, 2015, 123:225-238.
[19]UDDIN M S, STACHOWIAK A, MAMUN A A,et al. Autophagy and Alzheimer's disease: from molecular mechanisms to therapeutic implications[J]. Front Aging Neurosci, 2018, 10(4):1-18.
[20]JIA J, LE W D. Molecular network of neuronal autophagy in the pathophysiology and treatment of depression[J]. Neurosci Bull, 2015, 31(4):427-434.
[21]ZHANG J, CULP M L, CRAVER J G, et al. Mitochondrial function and autophagy: integrating proteotoxic, redox, and metabolic stress in Parkinson's disease[J]. J Neurochem, 2018, 144(6):691-709.
[22]XU Y, ZHANG C, WANG R, et al. Corticosterone induced morphological changes of hippocampal and amygdaloid cell lines are dependent on 5-HT7 receptor related signal pathway[J]. Neuroscience, 2010, 182(3):71-81.
[23]POORNIMA P, WENG C F, PADMA V V. Neferine from nelumbo nucifera induces autophagy through the inhibition of PI3K/Akt/mTOR pathway and ROS hyper generation in A549 cells[J]. Food Chem, 2013, 141(4):3598-3605.
[24]ZHANG H N, WU H,YE J, et al. Acute exposure to thimerosal induces antiproliferative properties, apoptosis, and autophagy activation in human Chang conjunctival cells[J]. Graef Arch Clin Exp, 2014, 52(2):275-284.
[25]ERUSTES A G, STEFANI F Y, TERASHIMA J Y, et al. Overexpression of α-synuclein in an astrocyte cell line promotes autophagy inhibition and apoptosis[J]. J Neurosci Res, 2018, 96(1):160-171.
[26]SALMINEN A, KAARNIRANTA K, HAAPASALO A, et al. Emerging role of p62/sequestosome-1 in the pathogenesis of Alzheimer's disease[J]. Prog Neurobiol, 2012, 96(1):90-95.

备注/Memo

备注/Memo:
收稿日期:2019-10-19。
基金项目:常州市卫生健康委员会重大项目资助(ZD201911)。
作者简介:郑静(1995—),女,江苏盐城人,硕士生。通信联系人:宋国强(1969—),E-mail: sgq@cczu.edu.cn
更新日期/Last Update: 2020-04-28