[1]陈爱莲,隆界龙,陈 杨.非晶SiO2团簇与单晶硅基底微观接触的分子动力学模拟[J].常州大学学报(自然科学版),2020,32(05):1-7.[doi:10.3969/j.issn.2095-0411.2020.05.001]
 CHEN Ailian,LONG Jielong,CHEN Yang.Molecular Dynamics Simulation on Microscopic Contact of Amorphous SiO2 Clusters with Single Crystalline Silicon Substrate[J].Journal of Changzhou University(Natural Science Edition),2020,32(05):1-7.[doi:10.3969/j.issn.2095-0411.2020.05.001]
点击复制

非晶SiO2团簇与单晶硅基底微观接触的分子动力学模拟()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第32卷
期数:
2020年05期
页码:
1-7
栏目:
材料科学与工程
出版日期:
2020-09-28

文章信息/Info

Title:
Molecular Dynamics Simulation on Microscopic Contact of Amorphous SiO2 Clusters with Single Crystalline Silicon Substrate
文章编号:
2095-0411(2020)05-0001-07
作者:
陈爱莲1隆界龙1陈 杨2
1.常州大学 机械工程学院,江苏 常州 213164; 2.常州大学 材料科学与工程学院,江苏 常州 213164
Author(s):
CHEN Ailian1 LONG Jielong1 CHEN Yang2
1. School of Mechanical Engineering, Changzhou University, Changzhou 213164, China; 2. School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
关键词:
分子动力学模拟 非晶氧化硅 单晶硅 相变 化学机械抛光
Keywords:
molecular dynamics simulation amorphous SiO2 single crystalline silicon phase transformation chemical mechanical polishing
分类号:
TH 117.3
DOI:
10.3969/j.issn.2095-0411.2020.05.001
文献标志码:
A
摘要:
通过分子动力学研究化学机械抛光过程中非晶SiO2团簇与单晶硅的微观接触行为,采用Tersoff势函数模拟了SiO2/Si之间的内部和表面交互作用。在考虑存在微观尺度黏着力及抛光垫的弹塑性变形的条件下,着重考察非晶SiO2与单晶硅的微观接触与黏着分离过程。通过分析所得载荷-深度关系曲线,表明SiO2团簇与单晶硅基体之间的微观接触中存在弹塑性变形。采用配位数(CN)和径向分布函数(RDF)分析单晶硅基底的相变过程,解释Si-I→Si-III→BCT5→Si-II的相变路径。进一步发现,微观接触中的相变区域随接触深度的增加而变大,但因非晶SiO2中氧原子的影响使得相变区域的界限不清晰,且相变原子β-Si的数量占优。
Abstract:
The microscopic contact behavior of amorphous SiO2 cluster with crystal silicon substrate during in chemical mechanical polishing process was explored in terms of molecular dynamics simulation. The internal action of SiO2cluster and Si base and the interaction between SiO2/Si were simulated by the Tersoff potential function. Considering the existence of micro-scale adhesion and the elastoplastic deformation of polishing pad, the adhesive contact and separation processes of amorphous SiO2 and single crystalline silicon were dynamically simulated. The analysis results of the obtained force-depth curves suggested that the elastoplastic deformation occurred during the microscopic contact processes between SiO2 cluster and Si substrate. The coordination number(CN)and radial distribution function(RDF)were also applied in analyzing the phase transition of the single crystalline silicon substrate. In the microscopic contact, the phase change region increased as the contact depth increased. However, the boundary of the phase transformation region was not clear, possibly resulting from the influence of oxygen atoms in SiO2 clusters. Moreover, the β-Si atom amounts were predominant in phase transformation.

参考文献/References:

[1]KRISHNAN M, NALASKOWSKI J W, COOK L M. Chemical mechanical planarization: slurry chemistry, materials, and mechanisms[J]. Chemical Reviews, 2010, 110:178-204.
[2]CHEN R L, LI S X, WANG Z, et al. Mechanical model of single abrasive during chemical mechanical polishing: molecular dynamics simulation[J]. Tribology International, 2019, 133: 40-46.
[3]CHIEN C H. The nanoindentation responses of nickel surfaces with different crystal orientations[J]. Molecular Simulation, 2007, 33: 905-917.
[4]YIN M T. Si-III(BC-8)crystal phase of Si and C: structural properties, phase stabilities, and phase transitions[J]. Physical Review B, 1984, 30: 1773-1776.
[5]韩静, 孙甲鹏, 方亮. 单晶硅的纳米力学响应及其相变机制[J]. 摩擦学学报, 2016, 36(5): 562-570.
[6]黄德明, 王立平, 薛群基. 单晶硅AFM加工过程的分子动力学模拟[J]. 摩擦学学报, 2011, 31(4): 328-334.
[7]张银霞, 郜伟, 康仁科,等. 单晶硅片磨削的表面相变[J]. 光学精密工程, 2008, 16(8): 1440-1445.
[8]洪羽. 单向压缩和纳米压痕引起的单晶硅相变研究[D]. 武汉:华中科技大学, 2009.
[9]BHUSHAN B, ISRAELACHVILI J N, LANDMAN U. Nanotribology: friction, wear and lubrication at the atomic scale[J]. Nature, 1995, 374: 607-616.
[10]段芳莉, 王家序, 雒建斌, 等. 纳米粒子碰撞下的单晶硅表面非晶相变[J]. 物理学报, 2007, 56(11): 6552-6556.
[11]温诗铸. 纳米摩擦学[M]. 北京:清华大学出版社, 1998.
[12]DMITRIEVSKII A A, EFREMOVA N Y, GUSEVA D G. Beta-induced decrease in the content of the Si-II, Si-XII, Si-III, and α-Si silicon phases formed under an indenter[J]. Physics of the Solid State, 2017, 59: 2257-2261.
[13]YU J X, LEI C, QIAN L M, et al. Investigation of humidity-dependent nanotribology behaviors of Si(100)/SiO2 pair moving from stick to slip[J]. Applied Surface Science, 2013, 265: 192-200.
[14]KIM D E, OH S I. Deformation pathway to high-pressure phases of silicon during nanoindentation[J]. Journal of Applied Physics, 2008, 104: 13043.
[15]GERBIG Y B, STRANICK S J, MORRIS D J, et al. Effect of crystallographic orientation on phase transformations during indentation of silicon[J]. Journal of Materials Research, 2009, 24: 1172-1183.
[16]BROQVIST P, KULLGREN J P, WOLF M J, et al. ReaxFF force-field for ceria bulk, surfaces, and nanoparticles[J]. Journal of Physical Chemistry C, 2015, 119: 13598-13609.
[17]WEN J, MA T, ZHANG W, et al. Atomic insight into tribochemical wear mechanism of silicon at the Si/SiO2 interface in aqueous environment: molecular dynamics simulations using ReaxFF reactive force field[J]. Applied Surface Science, 2016, 390: 216-223.
[18]PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117: 1-19.
[19]NIKITIN A N, MARKOVA G V, BALAGUROV A M, et al. Investigation of the structure and properties of quartz in the α-β transition range by neutron diffraction and mechanical spectroscopy[J]. Crystallography Reports, 2007, 52: 428-435.
[20]TÖBBENS D M, STÜßER N, KNORR K, et al. The new high-resolution neutron powder diffractometer at the berlin neutron scattering center[J]. Materials Science Forum, 2001, 378/379/380/381: 288-293.
[21]ALLEN M P, TILDESLEY D J, BANAVAR J R. Computer simulation of liquids[M]. [S.l.]: Clarendon Press, 1987.
[22]TERSOFF J. New empirical approach for the structure and energy of covalent systems[J]. Physical Review B, 1988, 37: 6991-7000.
[23]MUNETOH S, MOTOOKA T, MORIGUCHI K, et al. Interatomic potential for Si—O systems using Tersoff parameterization[J]. Computational Materials Science, 2007, 39: 334-339.
[24]STUKOWSKI A. Computational analysis methods in atomistic modeling of crystals[J]. JOM, 2014, 66: 399-407.
[25]SUN J, FANG L, HAN J, et al. Phase transformations of mono-crystal silicon induced by two-body and three-body abrasion in nanoscale[J]. Computational Materials Science, 2014, 821:140-150.

相似文献/References:

[1]夏庆,殷开梁.分子动力学模拟计算有机溶剂的溶解度参数[J].常州大学学报(自然科学版),2004,(01):40.
[2]殷开梁,等.分子模拟方法确定十六烷的凝点[J].常州大学学报(自然科学版),2003,(01):30.
 YIN Kai -liang,XIA Qing,et al.Determination of Solidif ication Point of Hexadecanes by Molecular Simulation[J].Journal of Changzhou University(Natural Science Edition),2003,(05):30.
[3]殷开梁,陈正隆.真空条件下β -环糊精和对甲酚包结过程的分子动力学模拟[J].常州大学学报(自然科学版),2000,(04):27.
 YIN Kai -liang,Cheng -Lung Chen.Molecular Dynamics Simulation of Binding Process of β -cyclodextr in and p -cresol in Vacuum[J].Journal of Changzhou University(Natural Science Edition),2000,(05):27.

备注/Memo

备注/Memo:
收稿日期:2020-04-28。
基金项目:国家自然科学基金资助项目(51405038, 51575058, 51875052)。
作者简介:陈爱莲(1975—),女,安徽舒城人,博士,副教授。E-mail:calcy@cczu.edu.cn
更新日期/Last Update: 2020-09-20