[1]姜志生,徐 慧,何岩峰,等.多元热流体开发稠油出砂机理及规律[J].常州大学学报(自然科学版),2024,36(02):48-60.[doi:10.3969/j.issn.2095-0411.2024.02.006]
 JIANG Zhisheng,XU Hui,HE Yanfeng,et al.Mechanism and law of heavy oil sand production in multi-component thermal fluid development[J].Journal of Changzhou University(Natural Science Edition),2024,36(02):48-60.[doi:10.3969/j.issn.2095-0411.2024.02.006]
点击复制

多元热流体开发稠油出砂机理及规律()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第36卷
期数:
2024年02期
页码:
48-60
栏目:
石油与天然气工程
出版日期:
2024-04-04

文章信息/Info

Title:
Mechanism and law of heavy oil sand production in multi-component thermal fluid development
文章编号:
2095-0411(2024)02-0048-13
作者:
姜志生1 徐 慧12 何岩峰12 刘楠楠12 陈尚平1 史 幸1 魏文基1 陈 晟1
1.常州大学 石油与天然气工程学院, 江苏 常州 213164; 2.中国石油-常州大学创新联合体, 江苏 常州 213164
Author(s):
JIANG Zhisheng1 XU Hui12 HE Yanfeng12 LIU Nannan12 CHEN Shangping1SHI Xing1 WEI Wenji1 CHEN Sheng1
1.School of Petroleum and Natural Gas Engineering, Changzhou University, Changzhou 213164, China; 2.CNPC-CZU Innovation Alliance, Changzhou 213164, China
关键词:
多元热流体 稠油 出砂机理 风险评价
Keywords:
multi-component thermal fluid heavy oil sanding mechanism risk assessment
分类号:
TE 3
DOI:
10.3969/j.issn.2095-0411.2024.02.006
文献标志码:
A
摘要:
以多元热流体吞吐开发为主要研究对象,结合多元热流体开发稠油时的储层特征,进行多元热流体岩心驱替地层模拟实验、空化水射流破岩实验等,发现多元热流体高温组分的溶蚀作用、气泡的空化作用、降黏作用以及多元热流体的组分变化都会导致储层出砂。进一步通过多组分多元热流体吞吐出砂模拟实验,发现焖井时间是影响出砂的主要因素。针对吞吐开发时的多轮次特点,进行了多轮次出砂模拟实验,随着吞吐轮次的变化,各因素对出砂的影响愈趋明显,即温度影响程度最强,注入速度次之,压力最弱。研究有利于指导精细化防砂,设定合理的生产开采制度,对延长油气井寿命和提升经济效益具有十分重要的作用。
Abstract:
This paper takes the huff and puff development of multi-component thermal fluid as the main research object, based on the reservoir characteristics of multi-component thermal fluid in the development of heavy oil, through searching relevant literature and carrying out formation simulation experiments of multi-component thermal fluid core displacement, cavitation water jet rock breaking and other experiments, it is found that the dissolution of high-temperature components of multi-component thermal fluid, cavitation, viscosity reduction, and composition changes of multi-component thermal fluid will lead to reservoir sand production. Furthermore, through the sand production simulation experiment of multi-component thermal fluid huff and puff, it is found that the soaking time is the main factor affecting sand production. In view of the multi-round characteristics of huff and puff development, multi-round sand production simulation experiments are also carried out in this paper. In view of the multi-round characteristics of huff and puff development, multiple rounds of sand production simulation experiments were carried out. As the huff and puff rounds change, the influence of various factors on sand production becomes more and more obvious, that is, temperature has the strongest influence, and injection speed is the second. In short, the pressure is the weakest. This study is helpful to guide fine sand control, set up a reasonable production and mining system, and play a very important role in prolonging the life of oil and gas wells and improving economic benefits.

参考文献/References:

[1] DONG C Y, ZHANG Q H, CUI M Y, et al. Research on dynamic sand production prediction of unconsolidated sandstone reservoir under complex conditions[J]. Petroleum Drilling Techniques, 2015, 43(6): 81-86.
[2] 李成军, 邵先杰, 胡景双, 等. 浅层稠油油藏蒸汽吞吐出砂机理及影响因素分析[J]. 特种油气藏, 2008, 15(4): 90-93, 110.
[3] 刘楠楠, 戚恒辰, 徐慧, 等. 油层厚度对井模型下蒸汽辅助重力驱稠油开发的影响[J]. 常州大学学报(自然科学版), 2023, 35(6): 82-89.
[4] LI B, LIU X Z, LIU Y K. The sand production mechanism and sand control technology status of heavy oil in the southern area of Chenjiazhuang Oilfield[J]. China Petroleum and Chemical Standard and Quality, 2011, 31(12): 147-153.
[5] 刘珊珊. 弱固结砂岩油藏出砂、防砂及携砂研究综述[J]. 重庆科技学院学报(自然科学版), 2023, 25(2): 1-7.
[6] ZHANG J, YUAN H, CHENG L, et al. Inverse estimation of the sand concentration for sand-oil flow in a horizontal pipeline based on the Eulerian model[J]. Journal of Petroleum Science and Engineering, 2020, 195: 107877.
[7] 李浩, 王香文, 刘双莲. 老油田储层物性参数变化规律研究[J]. 西南石油大学学报(自然科学版), 2009, 31(2): 85-89.
[8] NOOR I I, SHIBO K, ENZU Z, et al. Modeling and analysis of fluid rheology effect on sand screen performance[J]. Powder Technology, 2022, 18(1): 411-418.
[9] LIU N N, CHEN X L, JU B S, et al. Microbubbles generation by an orifice spraying method in a water-gas dispersion flooding system for enhanced oil recovery[J]. Journal of Petroleum Science and Engineering, 2021, 198: 108196.
[10] 刘楠楠. 多孔介质中气驱油动力机理及应用研究[D]. 北京: 中国地质大学, 2020.
[11] 周成. 弹性壁面附近单空化气泡动力学行为及特性研究[D]. 天津: 天津大学, 2020.
[12] JING J J, TANG K, QIU C H, et al. Large physical simulation test of cavitation reservoir stimulation[J]. Geoenergy Science and Engineering, 2023, 227: 211708.
[13] LIANG W, ZHAO X H, ZHANG Z J, et al. Mechanism and application of multi-component thermal fluid to enhance oil recovery in heavy oil reservoirs[J], Petroleum Geology and Engineering, 2014, 28(3): 115-117.
[14] GANAT T. Experimental investigation of viscous oil-water-sand flow in horizontal pipes: flow patterns and pressure gradient[J]. Petroleum, 2023: 2405-6561.
[15] MA Y L, CHEN Z X. Parallel computation for reservoir thermal simulation of multicomponent and multiphase fluid flow[J]. Journal of Computational Physics, 2004, 201(1): 224-237.
[16] 张会增, 向东, 高斐, 等. 基于H-B强度准则的出砂风险预测方法研究与应用[J]. 钻采工艺, 2023, 46(2): 59-64.
[17] FENG X, GONG R X, LI J S. Optimization method of multi-round thermal fluid injection intensity in multiple throughput cycles[J]. Petroleum Reservoir Evaluation and Development, 2019, 9(1): 64-67.
[18] 王磊, 郑伟, 余华杰, 等. 渤海稠油多元热流体多轮次吞吐开发效果评价[J]. 重庆科技学院学报(自然科学版), 2016, 18(4): 29-32.
[19] GUO M Z, LIU H Q, WANG Y W, et al. Sand production by hydraulic erosion during multicycle steam stimulation: an analytical study[J]. Journal of Petroleum Science and Engineering, 2021, 201: 108424.

相似文献/References:

[1]郝宏达,侯吉瑞,郭文敏,等.强水窜油藏凝胶/CO2复合吞吐三维物理模拟[J].常州大学学报(自然科学版),2023,35(05):67.[doi:10.3969/j.issn.2095-0411.2023.05.009]
 HAO Hongda,HOU Jirui,GUO Wenmin,et al.3D physical simulation of gel combined CO2 huff-n-puff in a channeling oil reservoir[J].Journal of Changzhou University(Natural Science Edition),2023,35(02):67.[doi:10.3969/j.issn.2095-0411.2023.05.009]
[2]赵 静,文 庆,梁启凡,等.多元热流体吞吐开发稠油乳状液稳定性机理[J].常州大学学报(自然科学版),2024,36(02):10.[doi:10.3969/j.issn.2095-0411.2024.02.002]
 ZHAO Jing,WEN Qing,LIANG Qifan,et al.Stability mechanism of heavy oil emulsion during cyclic multi-thermal fluids injection process[J].Journal of Changzhou University(Natural Science Edition),2024,36(02):10.[doi:10.3969/j.issn.2095-0411.2024.02.002]
[3]钱 坤,窦祥骥,唐君实,等.多元热流体发生器不同燃料燃烧工况优化[J].常州大学学报(自然科学版),2024,36(02):31.[doi:10.3969/j.issn.2095-0411.2024.02.004]
 QIAN Kun,DOU Xiangji,TANG Junshi,et al.Optimization of different fuel combustion conditions of multi-component thermal fluid generator[J].Journal of Changzhou University(Natural Science Edition),2024,36(02):31.[doi:10.3969/j.issn.2095-0411.2024.02.004]

备注/Memo

备注/Memo:
收稿日期: 2024-01-11。
基金项目: 中国石油-常州大学创新联合体资助项目(2021DQ06)。
作者简介: 姜志生(1999—), 男, 山东烟台人, 硕士生。通信联系人: 徐慧(1984—), E-mail: xuhui@cczu.edu.cn
更新日期/Last Update: 1900-01-01