[1]王雨航,王芝秀,顾晓彤,等.冷轧压下量对2618合金拉伸及热稳定性能的影响[J].常州大学学报(自然科学版),2025,37(02):1-9.[doi:10.3969/j.issn.2095-0411.2025.02.001]
 WANG Yuhang,WANG Zhixiu,GU Xiaotong,et al.Effect of cold rolling pressure on tensile and thermal stability of 2618 alloy[J].Journal of Changzhou University(Natural Science Edition),2025,37(02):1-9.[doi:10.3969/j.issn.2095-0411.2025.02.001]
点击复制

冷轧压下量对2618合金拉伸及热稳定性能的影响()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第37卷
期数:
2025年02期
页码:
1-9
栏目:
材料科学与工程:金属材料性能改善专题
出版日期:
2025-03-25

文章信息/Info

Title:
Effect of cold rolling pressure on tensile and thermal stability of 2618 alloy
文章编号:
2095-0411(2025)02-0001-09
作者:
王雨航1王芝秀12顾晓彤1李海12
1.常州大学 材料科学与工程学院, 江苏 常州 213164; 2.材料表面科学与技术省高校重点实验室(常州大学), 江苏 常州 213164
Author(s):
WANG Yuhang1 WANG Zhixiu12 GU Xiaotong1 LI Hai12
1.School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China; 2.Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164, China
关键词:
2618合金 冷轧压下量 热暴露 拉伸性能 热稳定性 显微组织
Keywords:
2618 alloy cold rolling pressure volume heat exposure tensile properties thermal stability microstructure
分类号:
TG 146.21
DOI:
10.3969/j.issn.2095-0411.2025.02.001
文献标志码:
A
摘要:
采用拉伸测试、光学显微镜(OM)、X射线衍射(XRD)及透射电镜(TEM),研究了2618合金经530 ℃,2 h固溶处理,15%~60%压下量冷轧,180 ℃,4 h时效处理以及200~250 ℃,120 h热暴露后的拉伸性能。结果表明:合金经冷轧、时效处理后具有高强度及良好的延伸率; 200 ℃热暴露时,合金稳定性能高于未变形合金,且抗拉强度显著提高,源于位错强化和析出强化; 225,250 ℃热暴露时,合金热稳定性下降,15%~30%压下量热暴露合金抗拉强度高于未变形热暴露合金,位错强化增量高于析出强化的下降幅度。15%压下量冷轧、时效处理合金经200 ℃,120 h热暴露后的抗拉强度为500 MPa,屈服强度为438 MPa,延伸率为8.1%。
Abstract:
The tensile properties of 530 ℃, 2 h solid solution treatment, 15%—60% pressure cold rolling, 180 ℃,4 h aging treatment and 200—250 ℃, 120 h heat exposure 2618 alloy were investigated by tensile test, optical microscopy(OM), X-ray diffraction(XRD)and transmission electron microscopy(TEM). The results show that the alloy has high strength and good elongation after cold rolling and aging; when 200 ℃ heat exposed, the stability of the alloy is higher than that of the undeformed alloy, and the tensile strength is significantly increased, due to dislocation strengthening and precipitation strengthening; when 225, 250 ℃ heat exposed, the thermal stability of the alloy decreases, the tensile strength of 15%—30% pressure is higher than that of the undeformed thermal exposed alloy, and the increase in dislocation strengthening is higher than the decrease in precipitation strengthening. The tensile strength, yield strength and elongation of 15% pressed cold rolled after thermal exposure 200 ℃, 120 h are 500 MPa, 438 MPa and 8.1%, respectively.

参考文献/References:

[1] MATHAN KUMAR N, SENTHIL KUMARAN S, KUMARASWAMIDHAS L A. Aerospace application on Al2618 with reinforced–Si3N4, AlN and ZrB2 in situ composites[J]. Journal of Alloys and Compounds, 2016, 672: 238-250.
[2] 苏勇, 陈翌庆, 丁厚福, 等. 快速凝固Al-Cu-Mg-Fe-Ni合金的显微组织和析出过程[J]. 稀有金属, 2002, 26(4): 253-256.
[3] CHEN J L, LIAO H C, WU Y N, et al. Contributions to high temperature strengthening from three types of heat-resistant phases formed during solidification, solution treatment and ageing treatment of Al-Cu-Mn-Ni alloys respectively[J]. Materials Science and Engineering: A, 2020, 772: 138819.
[4] BI J, LEI Z L, CHEN Y B, et al. Microstructure, tensile properties and thermal stability of AlMgSiScZr alloy printed by laser powder bed fusion[J]. Journal of Materials Science & Technology, 2021, 69: 200-211.
[5] LI G J, PAN X H, LIAO H C, et al. Sn-induced phase transformation mechanism from θ' to θ in Al-4Cu alloy and its influence on high temperature strength[J]. Transactions of Nonferrous Metals Society of China, 2023, 33(9): 2559-2573.
[6] WANG Z X, CHEN M, JIANG H H, et al. Effect of artificial ageing on strength and ductility of an Al-Cu-Mg-Mn alloy subjected to solutionizing and room-temperature rolling[J]. Materials Characterization, 2020, 165: 110383.
[7] 吴名冬, 肖代红, 陈炜斌, 等. 冷轧预变形对新型铝锂合金的时效析出与力学性能影响[J]. 稀有金属材料与工程, 2020, 49(9): 3251-3259.
[8] 伍波, 赵满秀, 刘婷婷, 等. 新型形变热处理2618铝合金的显微组织与力学性能研究[J]. 航空材料学报, 2013, 33(5): 29-35.
[9] 鲁成华, 郑亚亚, 何俊龙, 等. Al-Cu-Mg合金组织与力学性能的新型热机械处理调控[J]. 中国有色金属学报, 2023, 33(4): 997-1010.
[10] ZUIKO I, KAIBYSHEV R. Aging behavior of an Al-Cu-Mg alloy[J]. Journal of Alloys and Compounds, 2018, 759: 108-119.
[11] YANG Z, ZHANG M L, FAN L Y, et al. Towards high mechanical performance Al-Cu-Mg-Fe-Ni alloy: influence of composition, solution treatment and aged process on microstructural evolution and mechanical properties[J]. Journal of Materials Research and Technology, 2023, 23: 2054-2064.
[12] ELGALLAD E M, SHEN P, ZHANG Z, et al. Effects of heat treatment on the microstructure and mechanical properties of AA2618 DC cast alloy[J]. Materials & Design, 2014, 61: 133-140.
[13] NOVY' F, JANECˇEK M, KRÁL R. Microstructure changes in a 2618 aluminium alloy during ageing and creep[J]. Journal of Alloys and Compounds, 2009, 487(1/2): 146-151.
[14] STARINK M J, WANG S C. A model for the yield strength of overaged Al-Zn-Mg-Cu alloys[J]. Acta Materialia, 2003, 51(17): 5131-5150.
[15] 崔文. Al-5Cu合金高温长时热暴露组织演变及性能研究[D]. 西安: 西安工业大学, 2022.
[16] LI H, XU W, WANG Z X, et al. Effects of re-ageing treatment on microstructure and tensile properties of solution treated and cold-rolled Al-Cu-Mg alloys[J]. Materials Science and Engineering: A, 2016, 650: 254-263.

备注/Memo

备注/Memo:
收稿日期: 2024-03-03。
基金项目: 国家自然科学基金资助项目(52171029, 51671038)。
作者简介: 王雨航(1998—), 男, 江苏宿迁人, 硕士生。通信联系人: 李海(1972—), E-mail: Lehigh_73@163.com
更新日期/Last Update: 1900-01-01