参考文献/References:
[1] 白晓东, 何少林, 李重, 等. “碳中和”愿景下油田地面工程新能源替代及低碳绿色发展对策[J]. 油气与新能源, 2021, 33(4): 16-21, 42.
[2] 薛红霞, 姜建波, 王昊, 等. 甲烷二氧化碳重整制合成气催化材料及工艺探索研究[J]. 齐鲁石油化工, 2018, 46(1): 1-8.
[3] 丁晨旭, 汤睿, 钱渊, 等. Ni基催化剂中Ni颗粒粒径对甲烷干气重整反应的影响及其应用展望[J]. 天然气化工(C1化学与化工), 2022, 47(2): 1-10.
[4] CHEN P, HOU Z Y, ZHENG X M. Production of synthesis gas via methane reforming with CO2 on Ni/SiO2 catalysts promoted by alkali and alkaline earth metals[J]. Chinese Journal of Chemistry, 2005(7): 847-851.
[5] WANG N, SHEN K, YU X P, et al. Preparation and characterization of a plasma treated NiMgSBA-15 catalyst for methane reforming with CO2 to produce syngas[J]. Catalysis Science & Technology, 2013, 3(9): 2278-2287.
[6] CHRISTENSEN K O, CHEN D, LØDENG R, et al. Effect of supports and Ni crystal size on carbon formation and sintering during steam methane reforming[J]. Applied Catalysis A: General, 2006, 314(1): 9-22.
[7] OCHOA-FERNÁNDEZ E, RUSTEN H K, JAKOBSEN H A, et al. Sorption enhanced hydrogen production by steam methane reforming using Li2ZrO3 as sorbent: sorption kinetics and reactor simulation[J]. Catalysis Today, 2005, 106(1/2/3/4): 41-46.
[8] 龙威, 徐文媛. 甲烷重整制合成气机理研究的进展[J]. 河北师范大学学报(自然科学版), 2011, 35(4): 401-406.
[9] YANG F L, BAO X, LI P, et al. Boosting hydrogen oxidation activity of Ni in alkaline media through oxygen-vacancy-rich CeO2/Ni heterostructures[J]. Angewandte Chemie International Edition, 2019, 58(40): 14179-14183.
[10] SHEN H D, DONG Y J, YANG S W, et al. Identifying the roles of Ce3+—OH and Ce—H in the reverse water-gas shift reaction over highly active Ni-doped CeO2 catalyst[J]. Nano Research, 2022, 15(7): 5831-5841.
[11] DU X J, ZHANG D S, SHI L Y, et al. Morphology dependence of catalytic properties of Ni/CeO2 nanostructures for carbon dioxide reforming of methane[J]. The Journal of Physical Chemistry C, 2012, 116(18): 10009-10016.
[12] SHE W, QI T, CUI M X, et al. High catalytic performance of a CeO2-supported Ni catalyst for hydrogenation of nitroarenes, fabricated via coordination-assisted strategy[J]. ACS Applied Materials & Interfaces, 2018, 10(17): 14698-14707.
[13] LI W Z, ZHAO Z K, JIAO Y H, et al. Morphology effect of zirconia support on the catalytic performance of supported Ni catalysts for dry reforming of methane[J]. Chinese Journal of Catalysis, 2016, 37(12): 2122-2133.
[14] GAO T Y, CHEN J, FANG W H, et al. Ru/Mn X Ce1O Y catalysts with enhanced oxygen mobility and strong metal-support interaction: exceptional performances in 5-hydroxymethylfurfural base-free aerobic oxidation[J]. Journal of Catalysis, 2018, 368: 53-68.
[15] LI W Z, ZHAO Z K, DING F S, et al. Syngas production via steam-CO2 dual reforming of methane over LA-Ni/ZrO2 catalyst prepared by L-arginine ligand-assisted strategy: enhanced activity and stability[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(12): 3461-3476.
[16] LI W Z, ZHAO Z K, GUO X W, et al. Employing a nickel-containing supramolecular framework as Ni precursor for synthesizing robust supported Ni catalysts for dry reforming of methane[J]. ChemCatChem, 2016, 8(18): 2939-2952.