[1]朱佳丽,孔程荣,姚水良.柴油机尾气颗粒物中碳烟的微观结构和组成特性[J].常州大学学报(自然科学版),2025,37(03):28-37.[doi:10.3969/j.issn.2095-0411.2025.03.004]
 ZHU Jiali,KONG Chengrong,YAO Shuiliang.Microstructural and compositional characteristics of soot in diesel exhaust particulate matter[J].Journal of Changzhou University(Natural Science Edition),2025,37(03):28-37.[doi:10.3969/j.issn.2095-0411.2025.03.004]
点击复制

柴油机尾气颗粒物中碳烟的微观结构和组成特性()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第37卷
期数:
2025年03期
页码:
28-37
栏目:
环境科学与工程
出版日期:
2025-05-28

文章信息/Info

Title:
Microstructural and compositional characteristics of soot in diesel exhaust particulate matter
文章编号:
2095-0411(2025)03-0028-10
作者:
朱佳丽孔程荣姚水良
常州大学 环境科学与工程学院, 江苏 常州 213164; 石油和化工行业先进等离子体催化技术工程实验室(常州大学), 江苏 常州 213164
Author(s):
ZHU Jiali KONG Chengrong YAO Shuiliang
School of Environmental Science and Technology, Changzhou University, Changzhou 213164, China; Key Laboratory of Advanced Plasma Catalysis Engineering for China Petrochemical Industry, Changzhou University, Changzhou 213164, China
关键词:
柴油机尾气颗粒物 碳烟颗粒 微观结构 含氧官能团
Keywords:
Key words:diesel exhaust particulate matter soot particles microstructure oxygen-containing functional groups
分类号:
X 513
DOI:
10.3969/j.issn.2095-0411.2025.03.004
文献标志码:
A
摘要:
采用多种手段,表征柴油机尾气颗粒物(DPM)中碳烟的微观结构和化学组成特性,并与原始DPM进行比较。结果表明,碳烟的形貌表现为球形碳质颗粒组成的链状团聚体,微结构中同时包含类石墨区域和缺陷区域,这与DPM结构特性保持一致。但相较于原始DPM,碳烟中初级粒子的平均粒径略有减小,微结构中类石墨区域增加,无定形区域减少。从化学组成来看,碳烟表面C元素和O元素的原子数分数分别为81.8%和16.9%,其O元素略高于DPM。碳烟表面化学官能团种类与原始DPM相同,即碳烟同时包含sp2杂化石墨碳和sp3杂化缺陷碳,具有羟基、醚类、羰基和羧基等典型含氧官能团。但是,碳烟和DPM中不同官能团的原子数分数存在差异,碳烟表面羰基和羧基的原子数分数高于DPM,而C—O基团低于DPM。
Abstract:
Abstract:For soot in diesel exhaust particulate matter(DPM), various methods were used to characterize its intrinsic microstructure and chemical compositions. The characterization data of both DPM and soot were compared. The results showed that the morphology of soot was a chain-like aggregate composed of many spherical carbonaceous particles, whose microstructure contained both graphite-like and defective structures. This feature was consistent with the structural feature of DPM. However,compared with pristine DPM, the average particle size of primary particles in soot was slightly reduced. What's more, the graphitic-like region in its microstructure was increased, while the amorphous region was decreased. In terms of chemical compositions, the atomic fractions of C and O elements on soot surface were approximately 81.8% and 16.9%, respectively. Soot's oxygen atomic fraction was slightly higher than that of DPM. In addition, the types of chemical functional groups on soot surface were the same as those of DPM. Namely, soot contained both sp2-hybridized graphitic carbon and sp3-hybridized defective carbon, as well as some typical oxygen-containing functional groups, such as hydroxyl, ether, carbonyl and carboxyl groups. However, the atomic fractions of different functional groups of these two samples were different. The atomic fractions of carbonyl and carboxyl groups on soot surfaces were higher than those on DPM, but the atomic fraction of C—O groups on soot was lower than that on DPM.

参考文献/References:

[1] BURTSCHER H. Physical characterization of particulate emissions from diesel engines: a review[J]. Journal of Aerosol Science, 2005, 36(7): 896-932.
[2] TREE D R, SVENSSON K I. Soot processes in compression ignition engines[J]. Progress in Energy and Combustion Science, 2007, 33(3): 272-309.
[3] FRENKLACH M. Reaction mechanism of soot formation in flames[J]. Physical Chemistry Chemical Physics, 2002, 4(11): 2028-2037.
[4] YE S F, YAP Y H, KOLACZKOWSKI S T, et al. Catalyst ‘light-off' experiments on a diesel oxidation catalyst connected to a diesel engine: methodology and techniques[J]. Chemical Engineering Research and Design, 2012, 90(6): 834-845.
[5] LIU J, ZHAO Z, XU C M, et al. Comparative study on physicochemical properties and combustion behaviors of diesel particulates and model soot[J]. Energy & Fuels, 2010, 24(7): 3778-3783.
[6] GAO J B, TIAN G H, MA C C, et al. Physicochemical property changes during oxidation process for diesel PM sampled at different tailpipe positions[J]. Fuel, 2018, 219: 62-68.
[7] MÜLLER J O, SU D S, JENTOFT R E, et al. Diesel engine exhaust emission: oxidative behavior and microstructure of black smoke soot particulate[J]. Environmental Science & Technology, 2006, 40(4): 1231-1236.
[8] POPOVICHEVA O B, PERSIANTSEVA N M, KUZNETSOV B V, et al. Microstructure and water adsorbability of aircraft combustor soots and kerosene flame soots: toward an aircraft-generated soot laboratory surrogate[J]. The Journal of Physical Chemistry A, 2003, 107(47): 10046-10054.
[9] ZHU J L, SHANG J, ZHU T. A new understanding of the microstructure of soot particles: the reduced graphene oxide-likeskeleton and its visible-light driven formation of reactive oxygen species[J]. Environmental Pollution, 2021, 270: 116079.
[10] YAO S L, SHEN X, ZHANG X M, et al. Sustainable removal of particulate matter from diesel engine exhaust at low temperature using a plasma-catalytic method[J]. Chemical Engineering Journal, 2017, 327: 343-350.
[11] LIATI A, DIMOPOULOS EGGENSCHWILER P, SCHREIBER D, et al. Variations in diesel soot reactivity along the exhaust after-treatment system, based on the morphology and nanostructure of primary soot particles[J]. Combustion and Flame, 2013, 160(3): 671-681.
[12] ESS M N, FERRY D, KIREEVA E D, et al. In situ Raman microspectroscopic analysis of soot samples with different organic carbon content: structural changes during heating[J]. Carbon, 2016, 105: 572-585.
[13] SADEZKY A, MUCKENHUBER H, GROTHE H, et al. Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information[J]. Carbon, 2005, 43(8): 1731-1742.
[14] NEJAR N, MAKKEE M, ILLÁN-GÓMEZ M. Catalytic removal of NOx and soot from diesel exhaust: oxidation behaviour of carbon materials used as model soot[J]. Applied Catalysis B, Environmental, 2007, 75(1/2): 11-16.
[15] VELO-GALA I, LÓPEZ-PEÑALVER J J, SÁNCHEZ-POLO M, et al. Role of activated carbon surface chemistry in its photocatalytic activity and the generation of oxidant radicals under UV or solar radiation[J]. Applied Catalysis B: Environmental, 2017, 207: 412-423.
[16] 朱佳丽. 烟炱颗粒的大气光化学老化——活性物种生成和氧化潜势改变[D]. 北京: 北京大学, 2021.
[17] SCHUSTER M E, HÄVECKER M, ARRIGO R, et al. Surface sensitive study to determine the reactivity of soot with the focus on the European emission standards IV and VI[J]. The Journal of Physical Chemistry A, 2011, 115(12): 2568-2580.
[18] OMIDVARBORNA H, KUMAR A, KIM D S. Recent studies on soot modeling for diesel combustion[J]. Renewable and Sustainable Energy Reviews, 2015, 48: 635-647.
[19] 张欢欢. 低温等离子体催化氧化石墨碳的机理研究[D]. 杭州: 浙江工商大学, 2018.
[20] 张大山, 戴如娟, 毛林强, 等. 石化剩余污泥理化性能与热动力学特性研究[J]. 常州大学学报(自然科学版), 2022, 34(1): 33-41.
[21] FANG G D, LIU C, WANG Y J, et al. Photogeneration of reactive oxygen species from biochar suspension for diethyl phthalate degradation[J]. Applied Catalysis B: Environmental, 2017, 214: 34-45.
[22] 刘鹏, 刘莉, 周政忠, 等. 垃圾渗滤液污泥的有机结构对热解行为的影响[J]. 常州大学学报(自然科学版), 2021, 33(5): 69-76.

备注/Memo

备注/Memo:
收稿日期: 2024-10-20。
基金项目: 江苏省自然科学基金资助项目(BK20220631); 常州大学科研启动基金资助项目(ZMF22020028)。
作者简介: 朱佳丽(1994—), 女, 江苏张家港人, 博士, 讲师。通信联系人: 姚水良(1963—), E-mail: yaos@cczu.edu.cn
更新日期/Last Update: 1900-01-01