参考文献/References:
[1] BURTSCHER H. Physical characterization of particulate emissions from diesel engines: a review[J]. Journal of Aerosol Science, 2005, 36(7): 896-932.
[2] TREE D R, SVENSSON K I. Soot processes in compression ignition engines[J]. Progress in Energy and Combustion Science, 2007, 33(3): 272-309.
[3] FRENKLACH M. Reaction mechanism of soot formation in flames[J]. Physical Chemistry Chemical Physics, 2002, 4(11): 2028-2037.
[4] YE S F, YAP Y H, KOLACZKOWSKI S T, et al. Catalyst ‘light-off' experiments on a diesel oxidation catalyst connected to a diesel engine: methodology and techniques[J]. Chemical Engineering Research and Design, 2012, 90(6): 834-845.
[5] LIU J, ZHAO Z, XU C M, et al. Comparative study on physicochemical properties and combustion behaviors of diesel particulates and model soot[J]. Energy & Fuels, 2010, 24(7): 3778-3783.
[6] GAO J B, TIAN G H, MA C C, et al. Physicochemical property changes during oxidation process for diesel PM sampled at different tailpipe positions[J]. Fuel, 2018, 219: 62-68.
[7] MÜLLER J O, SU D S, JENTOFT R E, et al. Diesel engine exhaust emission: oxidative behavior and microstructure of black smoke soot particulate[J]. Environmental Science & Technology, 2006, 40(4): 1231-1236.
[8] POPOVICHEVA O B, PERSIANTSEVA N M, KUZNETSOV B V, et al. Microstructure and water adsorbability of aircraft combustor soots and kerosene flame soots: toward an aircraft-generated soot laboratory surrogate[J]. The Journal of Physical Chemistry A, 2003, 107(47): 10046-10054.
[9] ZHU J L, SHANG J, ZHU T. A new understanding of the microstructure of soot particles: the reduced graphene oxide-likeskeleton and its visible-light driven formation of reactive oxygen species[J]. Environmental Pollution, 2021, 270: 116079.
[10] YAO S L, SHEN X, ZHANG X M, et al. Sustainable removal of particulate matter from diesel engine exhaust at low temperature using a plasma-catalytic method[J]. Chemical Engineering Journal, 2017, 327: 343-350.
[11] LIATI A, DIMOPOULOS EGGENSCHWILER P, SCHREIBER D, et al. Variations in diesel soot reactivity along the exhaust after-treatment system, based on the morphology and nanostructure of primary soot particles[J]. Combustion and Flame, 2013, 160(3): 671-681.
[12] ESS M N, FERRY D, KIREEVA E D, et al. In situ Raman microspectroscopic analysis of soot samples with different organic carbon content: structural changes during heating[J]. Carbon, 2016, 105: 572-585.
[13] SADEZKY A, MUCKENHUBER H, GROTHE H, et al. Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information[J]. Carbon, 2005, 43(8): 1731-1742.
[14] NEJAR N, MAKKEE M, ILLÁN-GÓMEZ M. Catalytic removal of NOx and soot from diesel exhaust: oxidation behaviour of carbon materials used as model soot[J]. Applied Catalysis B, Environmental, 2007, 75(1/2): 11-16.
[15] VELO-GALA I, LÓPEZ-PEÑALVER J J, SÁNCHEZ-POLO M, et al. Role of activated carbon surface chemistry in its photocatalytic activity and the generation of oxidant radicals under UV or solar radiation[J]. Applied Catalysis B: Environmental, 2017, 207: 412-423.
[16] 朱佳丽. 烟炱颗粒的大气光化学老化——活性物种生成和氧化潜势改变[D]. 北京: 北京大学, 2021.
[17] SCHUSTER M E, HÄVECKER M, ARRIGO R, et al. Surface sensitive study to determine the reactivity of soot with the focus on the European emission standards IV and VI[J]. The Journal of Physical Chemistry A, 2011, 115(12): 2568-2580.
[18] OMIDVARBORNA H, KUMAR A, KIM D S. Recent studies on soot modeling for diesel combustion[J]. Renewable and Sustainable Energy Reviews, 2015, 48: 635-647.
[19] 张欢欢. 低温等离子体催化氧化石墨碳的机理研究[D]. 杭州: 浙江工商大学, 2018.
[20] 张大山, 戴如娟, 毛林强, 等. 石化剩余污泥理化性能与热动力学特性研究[J]. 常州大学学报(自然科学版), 2022, 34(1): 33-41.
[21] FANG G D, LIU C, WANG Y J, et al. Photogeneration of reactive oxygen species from biochar suspension for diethyl phthalate degradation[J]. Applied Catalysis B: Environmental, 2017, 214: 34-45.
[22] 刘鹏, 刘莉, 周政忠, 等. 垃圾渗滤液污泥的有机结构对热解行为的影响[J]. 常州大学学报(自然科学版), 2021, 33(5): 69-76.