[1]苏少航.基于人工神经网络的焊接熔池形状预测[J].常州大学学报(自然科学版),2007,(03):37-39.
 SU Shao- hang.Predicting the Shape of Welding Pool Based on the Neutral Network[J].Journal of Changzhou University(Natural Science Edition),2007,(03):37-39.
点击复制

基于人工神经网络的焊接熔池形状预测()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
期数:
2007年03期
页码:
37-39
栏目:
出版日期:
2007-09-25

文章信息/Info

Title:
Predicting the Shape of Welding Pool Based on the Neutral Network
作者:
苏少航
江苏工业学院机械工程系, 江苏 常州 213016
Author(s):
SU Shao- hang
Department of Mechanical Eng ineering , Jiangsu Polytechnic University, Chang zhou 213016, China
关键词:
人工神经网络 焊接熔池形状 脉冲激光焊
Keywords:
neutral netw ork shape of w elding pool pulsed laser w elding
分类号:
T P 389. 1
文献标志码:
A
摘要:
了解熔池形状与焊接工艺参数的关系对确定自动焊接生产线控制系统的算法十分重要。利用BP 神经网络对采用脉冲激 光焊接工艺焊接铝时的熔池形状进行了预测, 预测结果表明网络的最大输出相对误差不超过9%, 说明该网络具有较强的映射 能力, 能满足预测要求。
Abstract:
Understanding the relation of the shape of welding pool and welding parameters is very important for confirming the algorithm of control system of automatic welding line. Back Propagation neutral network is used to predict the shape of welding pool for the case of pulsed laser welding in an aluminum alloy. The predicted result indicate that maximum relative error is less than 9%, and the prediction requirement can be fulfilled.

参考文献/References:

[1] 袁曾任1 人工神经网络极其应用[M] 1 北京: 清华大学出版 社, 1999.
[2] John H ertz, Anders Krogh, Richard G Palmer. Introduction t o th e theory of neural com put at ion [M] . Washingt on D C: Add-i sion Wesley Publishing Company, 19911
[3] 葛景国, 高进强, 陈立功, 等1 焊接熔池正面几何参数和背面 熔宽的数据提取方法[J] 1 上海交通大学学报, 2004, 38 ( 7) : 1 113- 1 1171
[4] Li Laiping, Chen Shanben, Lin Tao. T he modeling of w elding pool surface ref lect ance of aluminum alloy pulse GTAW [J] . Materials S cience and Engin eering A, 2005, 394 ( 1 - 2) : 320 - 3261
[5] Emad Saad, Huijun Wang, Radovan Kovacevic. Classif icat ion of molt en pool modes in variable polarity plasma arc welding based on acoustic signature [J] . Journal of Mat erials Processing T echnology, 2006, 174 ( 1- 3) : 127- 1361

相似文献/References:

[1]李为民,邬国英,林西平.基于近红外光谱的汽油辛烷值神经网络模型研究[J].常州大学学报(自然科学版),2005,(03):16.
 LI Wei -min,WU Guo -ying,LIN Xi -ping.Study of the Gasoline Octane Number Model Using ANN Method with near Infrared Spectra Analysis[J].Journal of Changzhou University(Natural Science Edition),2005,(03):16.
[2]王洪元,史国栋,符彦惟,等.数据挖掘技术在故障诊断中的应用[J].常州大学学报(自然科学版),2001,(04):42.
 WANG Hong -yuan,SHI Gou -dong,FU Yan -wei,et al.Data Mining Technique and its Application in Fault Diagnosi s[J].Journal of Changzhou University(Natural Science Edition),2001,(03):42.

备注/Memo

备注/Memo:
作者简介: 苏少航( 1964- ) , 男, 江苏南通人, 副教授, 硕士, 主要从事高分子材料成型加工技术与设备及计算机 模拟研究; 模具CAD/ CAE/ CAM 技术研究。
更新日期/Last Update: 2007-09-25