参考文献/References:
[1] But cher J C . Numeri cal m ethods f or ordinary di ff erent ial equat
ion s [M] . Engl and: J ohn Wiley & S ons, 2003.
[2] H airer E, Nrs et t S P, Wanner G. Solving ordin ary dif f erent ial
equat ions I, Nonst iff problems [M] . Berlin: Springer- Verlag,
1993.
[3] Goeken D, John son O. Fifth - ord er Runge- Kut t a with higher
order derivat ive approximat ions [J] . Elect ronic Journ al of
Dif f erent ial Equat ions, 1999, 2: 1- 9.
[4] Goek en D, John son O. Run ge- Kut t a with higher order derivat
ive approximat ions [J] . Appl Num er Math, 2000, 34: 207
- 218.
[5] Podisuk M. Open form ula of Ru nge- Kut t a method f or sol vin g
aut on om ous ordinary dif f erent ial equat ion [J] . Appli ed Mathematics
and Comput at ion , 2006, 181: 536- 542.
[6] Wu X. A cl as s of Runge- Kut t a of order three and fou r with
reduced evaluat ions of funct ion [J] . Appl Num er Math ,
2003, 146: 417- 432.
[7] Vyver H V. A symplect ic Run ge- Ku tt a - Nys t r??Om method
w ith m inimal ph as e- lag [J] . Ph ys L et t , 2007, 367: 16 -
24.
[8] Zingg D W, Chis holm T R. Run ge- Ku tt a methods f or linear
ordinary dif f erent ial equ at ions [J] . Appl Numer Math , 1999,
31: 227- 238.