[1]陈明明,袁宁一,丁建宁,等.电容耦合等离子体化学气相沉积系统二维射频放电及薄膜制备工艺的研究[J].常州大学学报(自然科学版),2012,(02):5-10.
 CHEN Ming-ming,YUAN Ning-yi,DING Jian-ning,et al.Two-Dimensional Modelling of Radio-Frequency Discharges for Plasma Chemical Vapor Deposition System and Thin Film Deposition Process[J].Journal of Changzhou University(Natural Science Edition),2012,(02):5-10.
点击复制

电容耦合等离子体化学气相沉积系统二维射频放电及薄膜制备工艺的研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
期数:
2012年02期
页码:
5-10
栏目:
材料科学与工程
出版日期:
2012-03-30

文章信息/Info

Title:
Two-Dimensional Modelling of Radio-Frequency Discharges for Plasma Chemical Vapor Deposition System and Thin Film Deposition Process
作者:
陈明明1袁宁一12丁建宁12赵亚芝1
1.常州大学 低维材料与微纳器件中心,江苏 常州 213164; 2.江苏省太阳能电池材料与技术重点实验室,江苏 常州 213164
Author(s):
CHEN Ming-ming1 YUAN Ning-yi12 DING Jian-ning12 ZHAO Ya-zhi1
1.Center for Low-Dimensional Materials, Micro-Nano Devices and System, Changzhou University, Changzhou 213164, China; 2.Jiangsu Key Laboratory for Solar Cell Materials and Technology, Changzhou 213164, China
关键词:
等离子体化学气相沉积 二维自适应模型 电子密度 沉积速率
Keywords:
plasma chemical vapor deposition two-dimensional self-consistent model electron density depositon rate
分类号:
O 441.539
文献标志码:
A
摘要:
通过建立二维自适应模型,对等离子体化学气相沉积系统反应室中SiH4/H2在射频辉光放电条件下的多物理场进行仿真模拟,模拟结果显示:当射频功率和硅烷体积分数增大时,极板间电子密度增大,薄膜沉积速率也随之加快,但沉积的均匀性变差。结合利用该PECVD设备制备的薄膜微结构和沉积速率测试结果,得出射频功率为80 W,SiH4体积分数为1%时,薄膜的平均晶粒大小和晶化率最大,薄膜沉积速率较快且均匀性较好。
Abstract:
A two-dimensional self-consistent numerical code, including multi-physics, has been developed for the modeling of hydrogenated silicon film deposition from SiH4/H2 radio-frequency glow discharges in plasma enhanced chemical vapor deposition reaction chamber. The calculation results show that both the electron density between two electrodes and deposition rate of films increase with the increase of radio-frequency power and volume fraction of silane, but the deposition becomes non-uniform. Using the PECVD equipment to prepare the hydrogenated silicon films, the appropriate process parameters are obtained at radio-frequency power of 80 W and volume fraction of silane of 1%, the average crystallization size and crystallization volume fraction of the thin films reach to the maximum, the film deposition rate is faster and the deposition is more uniform.

参考文献/References:

[1] Bruno G, Capezzuto P, Madan A. Plasma Deposition of Amorphous Silicon-based Materials [M]. New York: Academic Press, 1995.
[2]Kushner M J. A model for the discharge kinetics and plasma chemistry during plasma enhanced chemical vapor deposition of amorphous silicon [J]. Journal of Applied Physics, 1988, 63(8): 2532-2551.
[3]Nienhuis G J, Goedheer W J, Hamers E A G, et al. A self-consistent fluid model for radio-frequency discharges in SiH4-H2 compared to experiments[J]. Journal of Applied Physics, 1997, 82(5): 2060-2071.
[4]Leroyy O, Goussetz G, Alvesx L L, et al. Two-dimensional modelling of SiH4-H2 radio-frequency discharges for a-Si:H deposition [J]. Plasma Sources Science Technology, 1998, 7: 348-358.
[5]Richards A D, Thompson B E, Sawin H H. Continuum modeling of argon radio frequency glow discharges [J]. Appl Phys Lett, 1987, 50(9):492-494.
[6] Kolobov V I. Fokker-Planck modeling of electron kinetics in plasmas and semiconductors [J]. Computational Materials Science, 2003, 28(2): 302-320.
[7]Funde A M, Bakr N A, Kamble D K. Influence of hydrogen dilution on structural, electrical and optical properties of hydrogenated nanocrystalline silicon(nc-Si:H)thin films prepared by plasma enhanced chemical vapour deposition(PE-CVD)[J]. Solar Energy Materials & Solar Cells, 2008, 92: 1217-1223.
[8]Parashara A, Kumara S, Gopea J, et al. RF-power density dependent phase formation in hydrogenated silicon films [J]. Journal of Non-Crystalline Solids, 2010, 356(35-36): 1774-1778.
[9] Amanatides E, Mataras D, Rapakoulias D E. Deposition rate optimization in SiH4/H2 PECVD of hydrogenated microcrystalline silicon[J]. Thin Solid Films, 2001, 383: 15-18.
[10]申陈海, 卢景霄, 陈永生, 等. 氢化微晶硅薄膜的两因素优化及高速沉积 [J]. 真空科学与技术学报, 2009, 29(5): 494-498.
[11]Nikura C, Itagak N, Matusuda A. Guiding Principles for Obtaining High-Quality Microcrystalline Silicon at High Growth Rates Using SiH4/H2 Glow-Discharge Plasma [J]. Jpn J Appl Phys, 2007, 46(5A): 3052-3058.
[12]朱锋, 张晓丹, 赵颖, 等. 硅烷浓度对本征微晶硅材料的影响 [J]. 半导体学报, 2004, 25(12): 1624-1627.
[13] Wu Z M, Sun J, Lei Q S, et al. Analysis on pressure dependence of microcrystalline silicon by optical emission spectroscopy [J]. Physica E, 2006, 33: 125-129.
[14] Nasuno Y, Kondo M, Matsuda A. Microcrystalline silicon thin-film solar cells prepared at low temperature using PECVD[J]. Solar Energy Materials & Solar Cells, 2002, 74: 497-503.

备注/Memo

备注/Memo:
基金项目:江苏省科技基金项目(BE2009028, BY2010122) 作者简介:陈明明(1987 —),女,江苏泰州人,硕士生; 通讯联系人:袁宁一。
更新日期/Last Update: 2012-03-30