参考文献/References:
[1] Caro C G, Pedley R J, Schroter R C, et al. The mechanics of the circulation[M]. New York: Oxford University Press,1978.
[2] Taylor C A, Hughes T J R, Zarins C K. Finite element modeling of blood flow in arteries[J]. Computer Methods in Applied Mechanics and Engineering,1998,158:156-196.
[3] Botnar R, Rappitsch G, Scheidegger M B. Hemodynamics in the carotid artery bifurcation: a comparison between numerical simulations and in vitro MRI measurements[J]. Journal of Biomechanics,2000,33:137-144.
[4] Fry D L. Acute vascular endothelial changes associated with increased blood velocity gradients[J]. Circulation Research,1968,22: 165-197.
[5] Birchall D, Zaman A, Hacker J, et al. Analysis of haemodynamic disturbance in the atherosclerotic carotid artery using computational fluid dynamics[J]. Eur Radiol, 2006,10: 1-10.
[6] 乔爱科,刘有军,伍时桂.弯曲动脉的血流动力学数值分析[J].计算力学学报,2003,20(2):155-163.
[7] Qiao A K, Guo X L, Wu S G, et al. Numerical study of nonlinear pulsatile flow in S-shaped curved arteries[J]. Medical Engineering & Physics, 2004,26(7): 545-552.
[8] Zhang Z G,Fan Y B,Deng X Y. Oxygen transfer in human carotid artery bifurcation[J]. Acta Mechanica Sinica,2007,23(3):305-209.
[9] 黄伟,刘有军,主海文,等.腹主动脉的血流动力学数值模拟[J].医用生物力学,2003,18(Supp):69-70.
[10] He X, Ku D N. Pulsatile flow in the human left coronary artery bifurcation: Average condition[J]. ASME J Biomech Eng, 1996,118:74-82.
[11] Qiao A, Liu Y, Li S, et al. Numerical simulation of physiological blood flow in 2-way coronary artery bypass grafts[J]. J Biol Phys,2005,31(2): 161-182.
[12] Longest P W, Kleinstreuer C. Particle-hemodynamics modeling of the distal end-to-side femoral bypass: effects of graft caliber and graft-end cut[J]. Med Eng Phys,2003,25: 843-858.
[13] 乔爱科,刘有军.面向医学应用的血流动力学仿真(II):动脉病变及治疗的血流动力学仿真[J/OL].
[2007-03-08].http://www.paper.edu.cn/releasepaper/content/200703-95.
[14] Zhang Z G, Zhang X W, Liu Y X. Effects of fluid recirculation on mass transfer from the arterial surface to flowing blood[J]. Acta Mech Sin,2012,28(3):904-910.
[15] Qiao A K, Liu Y J, Li S Y, et al. Numerical simulation of physiological blood flow in 2-way coronary artery bypass grafts[J]. J Biol Phys,2005,31(2): 161-182.
[16] Burleson A C. Identification of quantifiable hemodynamic factors in the assessment of cerobral aneurysm behavior[J]. Thromb Haemost, 1996, 76(1): 118 - 123.
[17] Parodi J C, Palmaz J C, Barone H D. Transfemoral intraluminal graft implantation for abdominal aortic aneurysms[J]. Ann Vasc Surg,1991,5:491-499.
[18] Beller C J, Labrosse M R, Hagl S. Increased aortic wall stress in aortic insufficiency: clinical data and computer model[J]. Eur J Cardiothorac Surg,2005, 27(2):270-275.
[19] Zhang H, Bathe K J. Direct and iterative computing of fluid flows fully coupled with structures[C]. First MIT Conference on Computational Fluid and Solid Mechanics. Massachusetts: [s.n.], 2001: 1440-1443.
[20] Rugonyi S, Bathe K J. On the finite element analysis of fluid flows fully coupled with structural interactions[J]. Computer Models and Methods in Applied Sciences,2001,2(2):195-212.
[21] Masahiro W, Teruo M. Computational simulation of flow in a dissecting aortic aneurysm reconstructed from CT images[C]. 6th International Symposium on Computer Methods in Biomechncs & Biomedical Engineering.Madrid, Spain:[s.n.],2004.
[22] Liou T M, Chang W C, Liao C C. LDV measurements in lateral model aneurysms of various sizes[J]. Experiments in Fluids,1997, 23:317-324.
[23] Liou T M, Liao C C. Flow fields in lateral aneurysm arising from parent vessels with different curvatures using PTV[J]. Experiments in Fluids, 1997, 23:288-298.
[24] Taylor C A, Draney M T, Ku J P. Predictive medicine: computational techniques in therapeutic decision making[J]. Computer aided surgery, 1999, 4(5): 231-247.
[25] Fan Y,Xiu K, Duan H, et al. Biomechanical and histological evaluation of the application of biodegradable poly-l-lactic cushion to the plate internal fixation for bone fracture healing[J]. Clinical Biomechanics, 2008, 23, Supplement 1: S7-S16.
[26] Bae J Y, Farooque U, Lee K-w, et al. Development of hip joint prostheses with modular stems[J]. Computer-Aided Design, 2011, 43(9): 1173-1180.
[27] Baggi L, Cappelloni I, Maceri F,et al. Stress-based performance evaluation of osseointegrated dental implants by finite-element simulation[J]. Simulation Modelling Practice and Theory, 2008, 16(8): 971-987.
[28] Lee W C, Zhang M, Boone D A,et al. Finite-element analysis to determine effect of monolimb flexibility on structural strength and interaction between residual limb and prosthetic socket[J]. J Rehabil Res Dev, 2004, 41(6A):775-786.
[29] Lee W C C, Zhang M. Design of monolimb using finite element modelling and statistics-based Taguchi method[J]. Clinical biomechanics(Bristol, Avon), 2005,20(7): 759-766.
[30] Mak A F, Zhang M, Boone D A.State-of-the-art research in lower-limb prosthetic biomechanics-socket interface: a review[J]. J Rehabil Res Dev, 2001, 38(2): 161-174.
[31] Lee W C, Zhang M, Mak A F. Regional differences in pain threshold and tolerance of the transtibial residual limb: Including the effects of age and interface material[J]. Archives of physical medicine and rehabilitation, 2005,86(4): 641-649.
[32] Zhang M, Mak A F T, Roberts V C. Finite element modelling of a residual lower-limb in a prosthetic socket: a survey of the development in the first decade[J]. Medical Engineering & Physics, 1998,20(5):360-373.