[1]丁 冲,陈晓虎,李迪杰,等.骨组织生物磁性及磁场生物学效应研究[J].常州大学学报(自然科学版),2013,(01):20-24.[doi:10.3969/j.issn.2095-0411.2013.01.004]
 DING Chong,CHEN Xiao-hu,LI Di-jie,et al.Research Progress on Biomagnetism and Biomagnetic Effect of Bone[J].Journal of Changzhou University(Natural Science Edition),2013,(01):20-24.[doi:10.3969/j.issn.2095-0411.2013.01.004]
点击复制

骨组织生物磁性及磁场生物学效应研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
期数:
2013年01期
页码:
20-24
栏目:
生物医学工程
出版日期:
2013-01-01

文章信息/Info

Title:
Research Progress on Biomagnetism and Biomagnetic Effect of Bone
作者:
丁 冲陈晓虎李迪杰宁旦旦商 澎
西北工业大学 生命学院,陕西 西安 710072
Author(s):
DING ChongCHEN Xiao-huLI Di-jieNING Dan-danSHANG Peng
School of Life Science, Northwestern Polytechnical University, Xi'an 710072, China
关键词:
磁场 抗磁性 成骨细胞 破骨细胞 骨细胞
Keywords:
magnetic field diamagnetism osteoblast osteoclast osteocyte
分类号:
R 318
DOI:
10.3969/j.issn.2095-0411.2013.01.004
文献标志码:
A
摘要:
骨组织是一种整体表现抗磁性的生物活性物质,外加磁场具有促进骨组织生长的作用。临床上应用一定参数的脉冲磁场、静磁场进行骨质疏松、骨折愈合的治疗,并开发磁性骨植入材料促进骨修复。骨组织磁生物学效应的研究在整体、细胞、分子等多个层面开展,不同的骨组织细胞对磁场产生不同的响应。对各种骨细胞细胞磁性来源进行分析和检测,将为骨组织磁生物效应的机制及其应用提供指导和帮助。
Abstract:
The magnetic properties of bone tissue are mainly dominated by the diamagnetic materials, which can act with the external magnetic fields. With the function of promoting bone growth, puls-electromagnetic fields(PEMFs)or static magnetic fields(SMFs)with certain parameters can be used as a therapy for the osteoporosis and fracture healing in clinical application, as well as the bone implant materials with magnetic property are developed to promote the damaged tissues repair. The research of effect of magnetic fields on bone tissue are studied on integration, cell, and molecular level. The osteoblast, osteoclast and osteocyte's responses to the same magnetic fields are different. To analysis and detect the magnetism of bone cells and bone tissue will provide a guidance for research the mechanism of biomagnetic effects of bone and its application.

参考文献/References:

[1]Barnes F S, Greenebaum B. Handbook of Biological Effects of Electromagnetic Fields: Bioengineering and biophysical aspects of electromagnetic fields [M]. Boca Raton: Taylor & Francis, 2007: 101-111.
[2] Wiltschko W, Wiltschko R. Magnetic compass orientation in birds and its physiological basis [J]. Die Naturwissenschaften, 2002, 89(10): 445-452.
[3] Kirschvink J L, Kobayashi-Kirschvink A, Woodford B J. Magnetite biomineralization in the human brain [J]. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(16): 7683-7687.
[4] Arakaki A, Webb J, Matsunaga T. A novel protein tightly bound to bacterial magnetic particles in Magnetospirillum magneticum strain AMB-1 [J]. The Journal of biological chemistry, 2003, 278(10): 8745-8750.
[5] Dobson J. Nanoscale biogenic iron oxides and neurodegenerative disease [J]. FEBS Lett, 2001, 496(1): 1-5.
[6] Collingwood J F, Mikhaylova A, Davidson M, et al. In situ characterization and mapping of iron compounds in Alzheimer's disease tissue [J]. Journal of Alzheimer's disease: JAD, 2005, 7(4): 267-272.
[7] Harrison P M, Arosio P. The ferritins: molecular properties, iron storage function and cellular regulation [J]. Biochim Biophys Acta, 1996, 1275(3): 161-203.
[8] Grassi-Schultheiss P P, Heller F, Dobson J. Analysis of magnetic material in the human heart, spleen and liver [J]. Biometals, 1997, 10(4): 351-355.
[9] Bartzokis G, Tishler T A. MRI evaluation of basal ganglia ferritin iron and neurotoxicity in Alzheimer's and Huntingon's disease [J]. Cell Mol Biol, 2000, 46(4): 821-833.
[10] St Pierre T G, Clark P R, Chua-Anusorn W. Measurement and mapping of liver iron concentrations using magnetic resonance imaging [J]. Annals of the New York Academy of Sciences, 2005, 1054: 379-385.
[11] Williamson S J, Division NATOSA. Biomagnetism: An Interdisciplinary Approach [M]. New York: Plenum Press, 1983: 501-510.
[12] Bassett C A. The development and application of pulsed electromagnetic fields(PEMFs)for ununited fractures and arthrodesis [J]. Clinics in plastic surgery, 1985, 12(2): 259-277.
[13] Sharrard W J. A double-blind trial of pulsed electromagnetic fields for delayed union of tibial fractures [J]. The Journal of bone and joint surgery, British volume, 1990, 72(3): 347-355.
[14] Darendeliler M A, Darendeliler A, Sinclair P M. Effects of static magnetic and pulsed electromagnetic fields on bone healing [J]. The International journal of adult orthodontics and orthognathic surgery, 1997, 12(1): 43-53.
[15] 阎启昌, 富田直秀, 王瑜, 等. 静磁场对骨组织影响的实验研究 [J]. 中国医科大学学报, 2001(4): 18-20.
[16] Puricelli E, Ulbrich L M, Ponzoni D, et al. Histological analysis of the effects of a static magnetic field on bone healing process in rat femurs [J]. Head & face medicine, 2006(2): 43.
[17] 潘晓华, 肖德明, 张小云, 等. 旋转恒定磁场治疗激素性股骨头坏死的效果与病理机制 [J]. 中山大学学报:医学科学版, 2007(1): 19-24.
[18] 刘文军,张树军,马凤宝,等. 脉动磁场与静磁场结合促进骨愈合的研究与临床应用 [J]. 中国医学物理学杂志, 1996(4): 241-242.
[19] 刘颖, 张萌萌, 郭忠, 等. 低频脉冲电磁场联合二膦酸盐和活性维生素D治疗骨质疏松的临床观察 [J]. 中国老年学杂志, 2010(8): 1133-1134.
[20] 仇丽鸿, 汤旭娜, 钟鸣, 等. 静磁场对成骨细胞增殖及细胞周期的影响 [J]. 上海口腔医学, 2004(5): 469-471.
[21] 王胜国, 周力, 王艳民, 等. 静磁场对成骨细胞增殖活性和细胞表面超微结构的影响 [J]. 第三军医大学学报, 2011(12): 1220-1223.
[22] 骞爱荣, 张维, 瓮媛媛, 等. 强磁重力环境对成骨细胞增殖、形态及其主要元素含量的影响 [J]. 第四军医大学学报, 2008(19): 1729-1732.
[23] 朱琳琳, 仇丽鸿. 静磁场对鼠成骨细胞增殖和胞内钙离子浓度的影响 [J]. 实用口腔医学杂志, 2008(3): 350-353.
[24] 王胜国, 周力, 陈扬熙, 等. 不同强度静磁场对成骨细胞细胞内钙离子浓度的影响 [J]. 第三军医大学学报, 2010(23): 2515-2518.
[25] Yamamoto Y, Ohsaki Y, Goto T, et al. Effects of static magnetic fields on bone formation in rat osteoblast cultures [J]. Journal of dental research, 2003, 82(12): 962-966.
[26] 仇丽鸿, 包扬, 钟鸣, 等. 静磁场对大鼠成骨细胞增殖分化功能的影响 [J]. 实用口腔医学杂志, 2005(5): 606-609.
[27] 王嘉琪, 葛宝丰, 马晓妮, 等. 静磁场不同处理时间对体外培养成骨细胞增殖与分化的影响 [J]. 中国骨伤, 2012(11): 931-936.
[28] 狄升蒙, 田宗成, 高翔, 等. 破骨细胞研究进展 [J]. 细胞生物学杂志, 2009(6): 792-798.
[29] 赵吉, 杨福军, 徐文清. 脉冲磁场对成骨细胞和破骨细胞的影响 [J]. 中国骨质疏松杂志, 2010(8): 621-624.
[30] Chang K, Chang WH, Huang S, et al. Pulsed electromagnetic fields stimulation affects osteoclast formation by modulation of osteoprotegerin, RANK ligand and macrophage colony-stimulating factor [J]. Journal of orthopaedic research: official publication of the Orthopaedic Research Society, 2005, 23(6): 1308-1314.
[31] 孟芮, 王海芳, 续惠云, 等. 骨细胞功能研究进展 [J]. 细胞生物学杂志, 2008(2): 161-165.
[32] Qian A R, Wang L, Gao X, et al. Diamagnetic levitation causes changes in the morphology, cytoskeleton, and focal adhesion proteins expression in osteocytes [J]. IEEE transactions on bio-medical engineering, 2012, 59(1): 68-77.
[33] Qian A R, Yin D C, Yang P F, et al. Application of Diamagnetic Levitation Technology in Biological Sciences Research [J]. Applied Superconductivity, IEEE Transactions on, 2013, 23(1): 3600305.
[34] Jin X, Chalmers J J, Zborowski M. Iron transport in cancer cell culture suspensions measured by cell magnetophoresis [J]. Analytical chemistry, 2012, 84(10): 4520-4526.
[35] 周万松. 磁场的临床应用与研究进展(2005年磁疗研讨会资料综述)[J]. 生物磁学, 2005(4): 110-111.
[36] 金绍林, 周云. 磁场在现代骨科领域的应用进展[J]. 生物医学工程与临床, 2011(6): 591-595.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金项目资助(51147008) 作者简介:丁冲(1984—),女,陕西三原人,博士生; 通讯联系人:商澎。
更新日期/Last Update: 2013-01-01