[1]徐守坤,徐 飞.用户兴趣建模的改进[J].常州大学学报(自然科学版),2013,(01):66-70.[doi:10.3969/j.issn.2095-0411.2013.01.014]
 XU Shou-kun,XU Fei.Improvement of User Interest Modeling[J].Journal of Changzhou University(Natural Science Edition),2013,(01):66-70.[doi:10.3969/j.issn.2095-0411.2013.01.014]
点击复制

用户兴趣建模的改进()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
期数:
2013年01期
页码:
66-70
栏目:
计算机与信息工程
出版日期:
2013-01-01

文章信息/Info

Title:
Improvement of User Interest Modeling
作者:
徐守坤徐 飞
常州大学 信息科学与工程学院,江苏 常州 213164
Author(s):
XU Shou-kunXU Fei
School of Information Science and Engineering,Changzhou University,Changzhou 213164,China
关键词:
本体查询 概念频繁兴趣簇 Apriori 算法 概念专注函数
Keywords:
ontology inquires concept of frequent interest cluster Apriori algorithm function of conceptual focus
分类号:
TP 311
DOI:
10.3969/j.issn.2095-0411.2013.01.014
文献标志码:
A
摘要:
基于用户兴趣模型的个性化推荐已经基本上解决了用户兴趣挖掘不足,推荐资源收敛性过快的缺点。但在二次过滤中,概念兴趣簇集中仍存在一定的兴趣冗余和兴趣表征模糊的缺点。将二次过滤的步骤进行了改进。在资源本体描述中,添加了表征各个资源的概念的权重,并引入了概念专注函数来消除兴趣冗余和兴趣表征不足的缺点。实验表明,该改进进一步提高了用户兴趣的推荐程度。
Abstract:
Based on the personalized recommendation of user's interest modeling had basically solved the problem of lack digging into user's interest and shortcoming of recommended resources been converged rapidly. But in thesecond filter, the shortcomings of interest redundancy and the fuzzy of interest characterization were still exist. This paper would improve the process of second filter, adding weight of concept that represented the various resources in the description of resource ontology, and introducing function of conceptual focus to dispel the interest redundancy and the fuzzy of interest characterization.Experimental results showed that the improvement further improved the recommended levels of user's interests.

参考文献/References:

[1]翁林开.基于内容过滤的个性化推荐关键技术研究[D].北京:清华大学,2011.
[2]蒋秀林,谢强,丁秋林.基于领域本体的用户模型的研究[J].计算机应用研究,2012,29(2):606-608.
[3]吴蓉,丁二玉,骆斌.基于加权本体的个性化语义搜索[J].计算机工程与设计,2008,29(19):5051-5053.
[4]张瑜,苏晓路,刘世洪,等.基于本体的农业科技信息用户建模系统设计与实现[J].现代图书馆情报技术,2009(11):34-39.
[5]Xuan Tian, Xiaoyong Du, He Hu. Modeling individual cognitive structure in contextual information retrieval[J]. Computers and Mathematics with Applications, 2009(57):1048-1056.
[6]Studer R, Benjamins V R, Fensel D. Konwledge engineering Principles and methonds[J]. Data and Kon-wledge,1998,25(122):161-197.
[7]陈基漓,牛秦洲.用户兴趣模型在图书馆个性化推荐服务中的应[J].情报杂志,2009,28(5):190-193.
[8]鲍翠梅.基于本体的数字图书馆个性化信息服务研究[J].现代情报,2009,29(5):77-80.
[9]田宏,马朋云.基于Jena的城市交通领域本体推理和查询方法[J].计算机应用与软件,2011,28(8):57-60.
[10]严武军.基于Jena规则推理数字图书馆信息检索系统研究[J].电脑开发与应用,2010,23(2):40-44.
[11]柴留祥,何丰.基于Jena及其本体推理的研究[J].计算机技术与发展,2011,21(11):117-120.
[12]张宗仁,杨天奇.基于自然语言理解的SPARQL本体查询[J].计算机应用,2010,30(12):3397-3400.

备注/Memo

备注/Memo:
作者简介:徐守坤(1972-),男,山东济宁人,教授。
更新日期/Last Update: 2013-01-01