[1]张震威,云 志,姜兴茂.纳米技术在生物医学方面的应用[J].常州大学学报(自然科学版),2013,(01):82-87.[doi:10.3969/j.issn.2095-0411.2013.01.017]
 ZHANG Zhen-wei,YUN Zhi,JIANG Xing-mao.Nanotechnology and its Applications in Biology and Medicine[J].Journal of Changzhou University(Natural Science Edition),2013,(01):82-87.[doi:10.3969/j.issn.2095-0411.2013.01.017]
点击复制

纳米技术在生物医学方面的应用()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
期数:
2013年01期
页码:
82-87
栏目:
出版日期:
2013-01-01

文章信息/Info

Title:
Nanotechnology and its Applications in Biology and Medicine
作者:
张震威1云 志1姜兴茂2
1.南京工业大学 化学化工学院,江苏 南京 210009; 2.常州大学 纳米结构材料实验室,江苏 常州 213164
Author(s):
ZHANG Zhen-wei1YUN Zhi1JIANG Xing-mao2
1.College of Chemistry and Chemical Engineering,Nanjing University of Technology,Nanjing 210009,China; 2.Laboratory of Nanostructured Materials, Changzhou University, Changzhou 213164, China
关键词:
生物医学 药物载体 拉曼增强效应 量子点 磁性纳米颗粒
Keywords:
biomedical drug carrier raman enhancement effect quantum dots magnetic nanoparticles
分类号:
TK 229.8
DOI:
10.3969/j.issn.2095-0411.2013.01.017
文献标志码:
A
摘要:
纳米颗粒(NPs)具有较高的科学研究价值,它是宏观物质和微观粒子之间的桥梁。本文阐述了纳米颗粒在生物医学中的应用,包括药物载体,表面拉曼增强效应,量子点,磁性纳米颗粒等。在治疗癌症,基因工程,生物代谢,胚胎发育等领域内的研究取得了突破性进展。
Abstract:
Nano particles(NPs)are highly valuable in scientific research and practical applications in many fields, as a bridge between macroscopic materials and microscopic particles. This article describes the applications of NPs in biology and medicine, including drug carriers, surface-enhanced Raman scattering, quantum dots, magnetic nano-particles etc.. These applications of NPs made breakthroughs of research in fields such as cancer therapy, genetic engineering, metabolism and embryo development.

参考文献/References:

[1] Herrero-Vanrell R, Rincón A C, Alonso M,et al. Self-assembled particles of an elastin-like polymer as vehicles for controlled drug release[J]. J Controlled Release, 2001,19,102, 113-122.
[2] Vauthier C, Dubernet C, Chauvierre C,et al. Drug delivery to resistant tumors: the potential of poly(alkyl cyanoacrylate)nanoparticles[J]. J Controlled Release,2003, 93, 151-160.
[3] Desai M P, Labhasetwar V, Walter E, et al. The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent[J]. Pharm Res,1997,14, 1568-1573.
[4] Zhang L, Gu F X, Chan J M, et al. Nanoparticles in Medicine: Therapeutic Applications and Developments[J]. Clin Pharmacol Ther, 2008, 83: 761-769.
[5] McDevitt M R, Chattopadhyay D, Kappel B J,et al. Tumor targeting with antibody-functionalized radio labeled carbon nanotubes[J]. J Nucl Med, 2007,48, 1180-1189.
[6] Ahmed F, Pakunlu R I, Srinivas G, et al. Shrinkage of a rapidly growing tumor by drug-loaded polymersomes:pH-triggered release through copolymer degradation[J]. Mol Pharm, 2006,3, 340-350.
[7] Li Zongxi. Mesoporous silica nanoparticles in biomedical applications[J]. Chem Soc Rev, 2012, 41, 2590–2605.
[8] Ashcroft J M, Tsyboulski D A, Hartman K B, et al. Fullerene(C60)immunoconjugates: interaction of water-soluble C60 derivatives with the murine anti-gp240 melanoma antibody[J]. Chem Commun, 2006,28:3004-3006.
[9] Ahmed F, Pakunlu R I, Srinivas G, et al. Shrinkage of a rapidly growing tumor by drug-loaded polymersomes: pH-triggered release through copolymer degradation[J]. Mol Pharm, 2006(3):340–350.
[10] Yunfeng Lu. Aerosol-assisted self-assembly of mesostructured spherical nanoparticles[J]. Nature, 1999,398:23-226.
[11] Xingmao Jiang,Jeffrey Brinker C. Aerosol Assisted Self-Assembly of Single-Crystal Core/Nanoporous Shell Particles as Model Controlled Release Capsules[J]. J Am Chem Soc,2006, 128:4512-4513.
[12] Xingmao Jiang.Aerosol fabrication of hollow mesoporous silica nanoparticles and encapsulation of L -methionine as a candidate drug cargo[J]. Chem Commun, 2010, 46:3019–3021.
[13] M Grun, Lauer I, Unger K K, The synthesis of micrometer- and submicrometer-size spheres of ordered mesoporous oxide MCM-41[J]. Adv Mater,1997, 9:254–257.
[14] Suzuki K,Ikari K, Imai H. Synthesis of Silica Nanoparticles Having a Well- Ordered Mesostructure Using a Double Surfactant System[J]. J Am Chem Soc, 2004, 126:462–463.
[15] J Lu, M Liong, Z Li, et al.Biocompatibility, Biodistribution, and Drug-Delivery Efficiency of Mesoporous Silica Nanoparticles for Cancer Therapy in Animals[J]. Small, 2010( 6):1794–1805.
[16] H Meng, M Xue, T Xia, et al, Use of Size and a Copolymer Design Feature To Improve the Biodistribution and the Enhanced Permeability and Retention Effect of Doxorubicin-Loaded Mesoporous Silica Nanoparticles in a Murine Xenograft Tumor Model[J]. ACS Nano, 2011(5): 4131-4144.
[17] Xia T, Kovochich M, Liong M, et aI.Polyethyleneimine Coating Enhances the Cellular Uptake of Mesoporous Silica Nanoparticles and Allows Safe Delivery of siRNA and DNA Constructs[J]. ACS Nano, 2009(3):3273-3286.
[18] Fraser Stoddart J. Stimulated Release of Size-Selected Cargos in Succession from Mesoporous Silica Nanoparticles[J]. Angew Chem Int Ed,2012, 51:5460.
[19] Jie Zeng. Controlling the Shapes of Silver Nanocrystals with Different Capping Agents[J]. J Am Chem Soc, 2010, 132, 8552-8553.
[20] Qiao Zhang. A Systematic Study of the Synthesis of Silver Nanoplates: Is Citrate a “Magic” Reagent?[J]. J Am Chem Soc, 2011, 133:18931-18939.
[21] Mulvaney S P, Musick M D, Keating C D, et al. Glass-Coated, Analyte-Tagged Nanoparticles: A New Tagging System Based on Detection with Surface-Enhanced Raman Scattering[J]. Langmuir, 2003, 19:4784–4790.
[22]Zhang X, Young M, Lyandres Ol, et al.Rapid Detection of an Anthrax Biomarker by Surface-Enhanced Raman Spectroscopy[J].J Am Chem Soc,2005,127(12):4484–4489.
[23] Shanmukh S,Jones L,Zhao Y P,et al. Identification and classification of respiratory syncytial virus(RSV)strains by surface-enhanced Raman spectroscopy and multivariate statistical techniques[J]. Analytical and Bioanalytical Chemistry,2008,390(6):1551-1555.
[24] Tripp R, Dluhy R, Zhao Y. Novel nanostructures for SERS biosensing[J]. Nano Today, 2008,3(3-4):31-37.
[25] Martin Mulvihill. Surface-Enhanced Raman Spectroscopy for Trace Arsenic Detection in Contaminated Water[J]. Angew Chem Int Ed, 2008, 47:6456 –6460.
[26] Chan W C W, Maxwell D J, Gao X H, et al. Luminescent quantum dots for multiplexed biological detection and imaging[J]. Curr Opin Biotechnol, 2002,13(1):40–46.
[27] Pathak S, Choi S K, Arnheim N, et al. Hydroxylated quantum dots as luminescent probes for in situ hybridization[J]. J Am Chem Soc, 2001,123:4103.
[28] Hoshino A, Fujioka K, Oku T, et al. Quantum dots targeted to the assigned organelle in living cells[J]. Microbiol Immunol,2004, 48(12): 985-994.
[29] Dubertret B, Skourides P, Norris D J, et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles[J]. Science, 2002,298:1759-1762.
[30] Gerion D, Chen F Q, Kannan B, et al. Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrystals and microarrays[J]. Anal Chem,2003,75(18): 4766-4772.
[31] Voura E B, Jaiswal J K, Mattoussi H, et al. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy[J]. Nat Med,2004,10(9): 993-998.
[32] Gupta A K, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications[J]. Biomaterials, 2005, 26: 3995-4021.
[33] Ge S. Facile Hydrothermal Synthesis of Iron Oxide Nanoparticles with Tunable Magnetic Properties[J]. J Phys Chem C, 2009, 113, 13593-13599.
[34] Niederberger M. An Iron Polyolate Complex as a Precursor for the Controlled Synthesis of Monodispersed Iron Oxide Colloids[J]. Chem Mater, 2002, 14:78-82.
[35] Feltin N. New Technique for Synthesizing Iron Ferrite Magnetic Nanosized Particles[J]. Langmuir, 1997, 13: 3927-3933.
[36] Hochepied J F. Magnetic properties of mixed cobalt–zinc ferrite nanoparticles[J]. J Appl Phys, 2000, 87:2472-2478.
[37] Lee Y. Large-Scale Synthesis of Uniform and Crystalline Magnetite Nanoparticles Using Reverse Micelles as Nanoreactors under Reflux Conditions[J]. Adv Funct Mater, 2005, 15: 503-509.
[38] Zhou Z H.Synthesis of Fe3O4?nanoparticles from emulsions[J]. J Mater Chem, 2001, 11:1704-1709.
[39] Chen Min, Liu J P, Sun Shouheng. One-Step Synthesis of FePt Nanoparticles with Tunable Size[J]. J AM CHEM SOC,2004, 126: 8394-8395
[40] Xu You.Facile one-step room-temperature synthesis of Pt3Ni nanoparticle networks with improved electro-catalytic properties[J].Chem Comm, 2012, 48:2665-2667.
[41] Chaaerjee J,Benge M,Haik Y.Synthesis and characterization of polymer encapsulated Cu-Ni magnetic nanoparticles for hyperthermia applications[J]. J Magn Magn Mater,2005,293(1)::303-309.
[42] Miriam Colombo. Biological applications of magnetic nanoparticles[J]. Chem Soc Rev, 2012, 41:4306-4334.
[43] Smith C. Striving for purity: advances in protein purification[J].Nat Methods, 2005(2 ):71-77.
[44] Obata K, Tajima H, Yohda M,et al. Recent developments in laboratory automation using magnetic particles for genome analysis Pharmaco-genomics[J]. Pharmaco-genomics, 2002, 3(5): 697-708.
[45] Widder K J. Magnetically responsive microspheres and other carriers for the biophysical targeting of antitumor agents[J]. Adv Pharmacol Chemother, 1979, 16:213-271.
[46] Yu M K. Image-Guided Prostate Cancer Therapy Using Aptamer-Functionalized Thermally Cross-Linked Superparamagnetic Iron Oxide Nanoparticles[J].Small, 2011( 7):2241-2249.
[47] Mornet S. Magnetic nanoparticle design for medical diagnosis and therapy[J]. J Mater Chem, 2004, 14: 2161-2175.

相似文献/References:

[1]姜兴茂,李亚情,张涛.纳米二氧化硅的制备及在生物医学领域的应用[J].常州大学学报(自然科学版),2015,(02):39.[doi:10.3969/j.issn.2095-0411.2015.02.009]
 JIANG Xing-mao,LI Ya-qing,ZHANG Tao.Preparation of Nano-Silica and Its Applications in Biomedicine[J].Journal of Changzhou University(Natural Science Edition),2015,(01):39.[doi:10.3969/j.issn.2095-0411.2015.02.009]

备注/Memo

备注/Memo:
作者简介:张震威(1985—),男,江苏江阴人,博士生; 通讯联系人:姜兴茂。
更新日期/Last Update: 2013-01-01