[1]沙文炜,刘 淋,李娜君,等.具有“门控”效应的智能型纳米药物载体[J].常州大学学报(自然科学版),2014,(03):78-83.[doi:10.3969/j.issn.2095-0411.2014.03.016]
 SHA Wen-wei,LIU Lin,LI Na-jun,et al.The Smart Nanocarrier with “Gate Keeper” for Controlled Drug Release[J].Journal of Changzhou University(Natural Science Edition),2014,(03):78-83.[doi:10.3969/j.issn.2095-0411.2014.03.016]
点击复制

具有“门控”效应的智能型纳米药物载体()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
期数:
2014年03期
页码:
78-83
栏目:
材料科学与工程
出版日期:
2014-06-30

文章信息/Info

Title:
The Smart Nanocarrier with “Gate Keeper” for Controlled Drug Release
作者:
沙文炜刘 淋李娜君路建美
苏州大学 材料与化学化工学部,江苏 苏州 215123
Author(s):
SHA Wen-weiLIU LinLI Na-junLU Jian-mei
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
关键词:
门控 刺激响应 两亲性聚合物 无机纳米粒子 纳米药物载体
Keywords:
gate keeper stimuliresponsive amphiphilic copolymer inorganic nanoparticles nano drug carri
分类号:
O69
DOI:
10.3969/j.issn.2095-0411.2014.03.016
文献标志码:
A
摘要:
肿瘤作为目前困扰人们的一种常见疾病,其治疗手段和抗肿瘤药物的研发倍受关注。针对化疗方法中至关重要的药物载体,综述了基于两亲性聚合物及其与无机纳米粒子组装的复合物的纳米药物载体实现控制释放的机理、种类以及在生物医药方面的意义等,并为今后智能型药物载体的设计提出了一点展望。
Abstract:
Cancers have been one of the major lifethreatening diseases in recent years,and new anticancer agents and therapy methods have attracted a lot of research interests.This paper reviewed the nanocarriers based on the “smart” amphiphilic copolymers and the nanocomposites composed of inorganic nanoparticles and the above copolymers,which play the key role in anticancer chemotherapy. The types of the nanocarriers,the mechanisms of the different gate keepers for controlled drug release and the significance of the smart nonocarriers in biomedical application are described. In addition,the prospect for more efficient and smarter drug releasing nanocarriers is described.

参考文献/References:

[1]Farokhzad O,Langer R.Nanomedicine: developing smarter therapeutic and diagnostic modalities[J].Adv Drug Delivery Rev,2006,58:1456-1459.
[2]Lee D,Koo H,Sun I,et al.Multifunctional nanoparticles for multimodal imaging and theragnosis[J].Chem Soc Rev,2012,41:2656-2672.
[3]Forster S,Plantenberg T.From self-organizing polymers to nanohybrid and biomaterials[J].Angew Chem Int Ed,2002,41:689-714.
[4]Riess G.Micellization of block copolymers[J].Prog Polym Sci,2003,28:1107-1170.
[5]Harada A,Kataoka K.Chain length recognition:core-shell supramolecular assembly from oppositely charged block copolymers[J].Science,1999,283:65-67.
[6]Kang N,Perron M,Prudhomme R,et al.Stereocomplex block copolymer micelles:core-shell nanostructures with enhanced stability[J].Nano Lett,2005,5:315-319.
[7]Mei X,Yang S,Chen D,et al.Light-triggered reversible assemblies of an azobenzene-containing amphiphilic copolymer with β-cyclodextrin modified hollow mesoporous silica nanoparticles for controlled drug release[J].Chem Commun, 2012,48:10010-10012.
[8]Qiu Y,Park K.Environment-sensitive hydrogels for drug delivery[J].Adv Drug Delivery Rev,2001,53:321-339.
[9]Ding C,Gu J,Qu X.Preparation of multifunctional drug carrier for tumor-specific uptake and enhanced intracellular delivery through the conjugation of weak acid labile linker[J].Bioconjugate Chem,2009,20:1163-1170.
[10]Chen W,Meng F,Li F,et al.pH-Responsive biodegradable micelles based on acid-Labile polycarbonate hydrophobe:synthesis and triggered drug release[J].Biomacromolecules,2009,10:1727-1735.
[11]Helene B,Andrew D,Arwyn T.Tuning the pH sensitivities of orthoester based compounds for drug delivery applications by simple chemical modification [J].Bioorg Med Chem Lett, 2010,20:2200-2203.
[12]Prabaharan M,Grailer J,Pilla S, et al.Amphiphilic multi-arm-block copolymer conjugated with doxorubicin via pH-sensitive hydrazone bond for tumor-targeted drug delivery[J].Biomaterials,2009,30:5757-5766.
[13]Zhou L,Cheng R,Tao H,et al.Endosomal pH-activatable poly(ethylene oxide)-graft-doxorubicin prodrugs:synthesis,drug release,and biodistribution in tumor-bearing mice [J].Biomacromolecules,2011,12:1460-1467.
[14]Gao G,Im G,Kim M,et al.Magnetite-nanoparticle-encapsulated pH-responsive polymeric micelle as an MRI probe for detecting acidic pathologic areas[J].Small,2010,6:201-1204.
[15]Wu X,Kim J,Koo H,et al.Tumor-targeting peptide conjugated pH-responsive micelles as a potential drug carrier for cancer therapy[J].Bioconjugate Chem,2010,21:208-213.
[16]Park H,Lee J,Cho M,et al.pH-stimuli-responsive near-infrared optical imaging nanoprobe based on poly(γ-glutamic acid)/poly(β-amino ester)nanoparticles[J].Nanotechnology,2011,22:465603-465611.
[17]Gao G,Lee J,Nguyen M,et al.pH-responsive polymeric micelle based on PEG-poly(β-amino ester)/(amido amine)as intelligent vehicle for magnetic resonance imaging in detection of cerebral ischemic area[J].J Control Release,2011,155:11-17.
[18]Saito G,Swanson J,Lee K.Drug delivery strategy utilizing conjugation via reversible disulfide links:role and site of cellular reducing activities[J].Adv Drug Delivery Rev,2003,55:199-215.
[19]Ballatori N,Krance S,Notenboom S,et al.Glutathione dysregulation and the etiology and progression of human diseases[J].Biol Chem,2009,390:191-214.
[20]Russo A,Graft W,Friedman N,et al. Selective modulation of glutathione levels in human normal versus tumor cells and subsequent differential response to chemotherapy drugs[J].Cancer Res,1986,46,2845-2848.
[21]Li J,Huo M,Wang J,et al.Redox-sensitive micelles self-assembled from amphiphilic hyaluronic aciddeoxycholic acid conjugates for targeted intracellular delivery of paclitaxel[J].Biomaterials,2012,33:2310-2320.
[22]Liu J,Pang Y,Huang W,et al.Bioreducible micelles self-assembled from amphiphilic hyperbranched multiarm copolymer for glutathione-mediated intracellular drug delivery[J].Biomacromolecules,2011,12:1567-1577.
[23]Sun H,Guo B,Li X,et al.Shell-sheddable micelles based on dextran-SS-poly(ε-caprolactone)diblock copolymer for efficient intracellular release of doxorubicin[J].Biomacromolecules,2010,11:848-854.
[24]Fan H,Huang J,Li Y,et al.Fabrication of reduction-degradable micelle based on disulfide-linked graft copolymer-camptothecin conjugate for enhancing solubility and stability of camptothecin[J]. Polymer, 2010, 51: 5107-5114.
[25]Schild H.Poly(N-isopropylacrylamide)-experiment,theory and application [J].Prog Polym Sci,1992,17:163-249.
[26]Jeong B,Bae Y,Lee D,et al.Biodegradable block copolymers as injectable drug-delivery systems[J].Nature,1997,388:860-862.
[27]Chilkoti A,Dreher M,Meyer D,et al.Targeted drug delivery by thermally responsive polymers[J].Adv Drug Delivery Rev,2002,54,613-630.
[28] Mori T,Maeda M.Temperature-responsive formation of colloidal nanoparticles from poly(N-isopropylacrylamide)grafted with singlestranded DNA[J].Langmuir, 2004,20:313-319.
[29]Feil H,Bae Y H,Feijen J,et al. Effect of comonomer hydrophilicity and ionization on the lower critical solution temperature of N-isopropylacrylamide copolymers [J]. Macromolecules,1993,26:2496-2500.
[30]Shibayama M,Mizutani S,Nomura S.Thermal properties of copolymer gels containing N-isopropylacrylamide[J].Macromolecules,1996,29:2019-2024.
[31]Sortino S.Photoactivated nanomaterials for biomedical release applications [J].J Mater Chem,2012,22:301-318.
[32]Lu J,Choi E,Tamanoi F,et al.Light-activated nanoimpeller-controlled drug release in cancer cells [J].Small,2008,4:421-426.
[33]Lai J,Mu X,Xu Y,et al. Light-responsive nanogated ensemble based on polymer grafted mesoporous silica hybrid nanoparticles[J].Chem Commun,2010,46:7370-7372.
[34]Kresge C,Leonowicz M,Roth W,et al.Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism [J].Nature,1992,359:710-712.
[35]He Q,Shi J.Mesoporous silica nanoparticle based nano drug delivery systems:synthesis,controlled drug release and delivery,pharmacokinetics and biocompatibility[J].J Mater Chem,2011,21:5845-5855.
[36]Popat A,Hartono S,Stahr F,et al.Mesoporous silica nanoparticles for bioadsorption,enzyme immobilization and delivery carriers [J].Nanoscale,2011,3:2801-2818.
[37]Lu J,Liong M,Li Z X,et al. Biocompatibility,Biodistribution,and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals [J].Small,2010,6:1794-1805.
[38]Mei X,Chen D Y,Li N J,et al. Hollow mesoporous silica nanoparticles conjugated with pH-sensitive amphiphilic diblock polymer containing acetal moietys for controlled drug release[J]. Microporous Mesoporous Mater,2012,152:16-24.
[39]Zhang W,Wu X,Hu J,et al.Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries[J].Adv Funct Mater,2008,18:3941-3946.
[40]Ge J,Hu Y,Blasini M,et al.Superparamagnetic magnetite colloidal nanocrystal clusters[J].Angew Chem Int Ed,2007,46:4342-4345.
[41]Fan R,Chen X,Gui Z,et al.A new simple hydrothermal preparation of nanocrystalline magnetite Fe3O4[J].Mater Res Bull,2001,36:497-502.
[42]Park J,An K,Hwang Y,et al.Ultra-large-scale syntheses of monodisperse nanocrystals[J].Nat Mater,2004,3:891-895.
[43]Chen D,Li N,Gu H,et al.A novel degradable polymeric-carrier for the encapsulation and selective release and imaging of magnetic nanoparticles[J].Chem Commun,2010,46:6708-6710.
[44]Lai C,Trewyn B,Jeftinija D,et al.A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules[J].J Am Chem Soc,2003,125:4451-4459.
[45] Giri S,Trewyn B,Stellmaker M,et al. Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles [J]. Angew Chem Int Ed,2005,44:5038-5044.
[46]Gao Q,Xu Y,Wu D,et al. pH-responsive drug release from polymer-coated mesoporous silica spheres [J]. J Phys Chem C,2009,113:12753-12758.
[47]Zou H,Wu S,Shen J.Polymer/silica nanocomposites:preparation,characterization,properties,and applications[J].Chem Rev,2008,108:3893-3957.

备注/Memo

备注/Memo:
基金项目:江苏省高校自然科学研究面上项目(13KJB430022); 苏州大学校级大学生创新创业训练计划项目(2013xj024)。 作者简介:沙文炜(1993-),男,江苏靖江人,本科生。通讯联系人:李娜君(1978-),Email:linajun@suda.edu.cn
更新日期/Last Update: 2014-06-30