[1]康慧燕.关于一类三阶非线性微分方程全局稳定性的新结果[J].常州大学学报(自然科学版),2015,(04):116-120.[doi:10.3969/j.issn.2095-0411.2015.04.022]
 KANG Huiyan.Some New Results on Global Stability of A Class of Third-Order Nonlinear Differential Equations[J].Journal of Changzhou University(Natural Science Edition),2015,(04):116-120.[doi:10.3969/j.issn.2095-0411.2015.04.022]
点击复制

关于一类三阶非线性微分方程全局稳定性的新结果()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
期数:
2015年04期
页码:
116-120
栏目:
数理科学
出版日期:
2015-11-15

文章信息/Info

Title:
Some New Results on Global Stability of A Class of Third-Order Nonlinear Differential Equations
作者:
康慧燕
常州大学 数理学院,江苏 常州213164
Author(s):
KANG Huiyan
School of Mathematics and Physics, Changzhou University, Changzhou 213164, China
关键词:
非线性微分方程 全局稳定性 李雅普诺夫函数
Keywords:
nonlinear differential equations global stability Liapunov function
分类号:
O 175.34
DOI:
10.3969/j.issn.2095-0411.2015.04.022
文献标志码:
A
摘要:
研究了一类一般的三阶非线性微分方程的稳定性问题。通过构造合适的李雅普诺夫函数以及利用一些分析方法,给出了判定零解全局渐近稳定的充分条件。所得结果推广了现有结果,并修正了Omeike发表于2007年的一个判定稳定性的定理。同时给出了2个例子来验证所得结果在应用时的有效性。
Abstract:
This paper studies a class of rather general third-order nonlinear differential equations. By constructing appropriate Liapunov functions and some analytical method, sufficient conditions are derived to ensure global asymptotical stability of the zero solutions. The results extend those existing ones and modify a theorem given by Omeike in 2007. Furthermore, two illustrative examples are given to demonstrate the effectiveness of the obtained results.

参考文献/References:

[1]OMEIKE M O. Further results on global stability of third-order nonlinear differential equation[J].Nonlinear Analysis, 2007(67): 3394-3400.
[2]QIAN C. On global stability of third-order nonlinear differential equations[J].Nonlinear Analysis, 2000(42): 651-661.
[3]REISSING R, SANSONE G, CONTI R. Nonlinear Differential Equations of Higher Order[M].Leyden: Noordhoff Inter Pub, 1974: 368-372.
[4]王联,王慕秋. 非线性常微分方程定性分析[M].哈尔滨:哈尔滨工业大学出版社,1987.
[5]EZEILO J O C. On the stability of solutions of certain differential equations of the third order[J].Quart J Math Oxford Ser, 1960(11): 64-69.
[6]OGURTSOV A I. On the stability of the solutions of some nonlinear differential equations of the third and fourth order[J].Izv Vyssh, Uchebn Zaved Matematika, 1959(10): 200-209.
[7]ZHANG L J, SI L G. Globally asymptotic stability of a class of third order nonlinear system[J].Acta Math Appl Sinic, 2007(30): 99-102.
[8]SHIMANOV S N. On the stability of the solution of a nonlinear equation of the third order[J].Prikl Mat Mekh, 1953(17): 369-372.
[9]SINHA A S C. On stability of solutions of some third and fourth order delay differential equations[J].Information and Control, 1973(23): 165-172.
[10]WANG L, WANG M Q. Analysis of construction of Lyapunov functions of third-order nonlinear systems[J].Acta Math Appl Sinica, 1983(6): 309-323.
[11]SADEK A I. Stability and boundedness of a kind of third-order delay differential system[J], Appl Math Lettres, 2003(16): 657-662.
[12]ZHU Y F. On stability, boundedness and existence of periodic solution of a kind of third order nonlinear delay differential system[J].Ann differential equations, 1992(8): 249-259.苏江滨

备注/Memo

备注/Memo:
收稿日期:2015-03-14。作者简介:康慧燕(1973—),女,内蒙古包头人,博士,讲师,主要从事复杂网络上的传染病建模及动力学研究。
更新日期/Last Update: 2015-10-20