[1]徐一丹,庞明军,徐 磊,等.重力水平与粘度变化对水平槽道泡状湍流影响的数值研究[J].常州大学学报(自然科学版),2016,(01):60-66.[doi:10.3969/j.issn.2095-0411.2016.01.012]
 XU Yidan,PANG Mingjun,XU Lei,et al.Numerical Simulation of Gravity Level and Viscosity Change’s Influence on the Bubbly Turbulence in Horizontal Channel[J].Journal of Changzhou University(Natural Science Edition),2016,(01):60-66.[doi:10.3969/j.issn.2095-0411.2016.01.012]
点击复制

重力水平与粘度变化对水平槽道泡状湍流影响的数值研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
期数:
2016年01期
页码:
60-66
栏目:
石油与天然气工程
出版日期:
2016-01-28

文章信息/Info

Title:
Numerical Simulation of Gravity Level and Viscosity Change’s Influence on the Bubbly Turbulence in Horizontal Channel
文章编号:
2095-0411(2016)01-0060-07
作者:
徐一丹庞明军徐 磊袁惠新
常州大学 机械工程学院,江苏 常州 213016
Author(s):
XU Yidan PANG Mingjun XU Lei YUAN Huixin
School of Mechanical Engineering,Changzhou University,Changzhou 213016,China
关键词:
泡状流 微气泡 湍流调制 重力水平 黏度变化
Keywords:
bubbly flow microbubbles turbulence modulation gravity level viscosity change
分类号:
V 524
DOI:
10.3969/j.issn.2095-0411.2016.01.012
文献标志码:
A
摘要:
鉴于泡状流在工业及太空领域均具有广泛的应用前景,综合研究重力及黏度变化对液相湍流的影响是必不可少的。文中采用数值模拟方法,分别研究了气泡加入后重力水平和黏度变化对液相湍流统计量和气相体积分数的影响。结果表明:在常重力下,气泡注入后湍流强度与雷诺应力被调制,绝大部分大部分气泡聚集在上壁面; 而在无重力下,液相的湍流强度及雷诺应力基本不变,气泡均匀分布在槽道内。黏度对液相湍流的影响与重力相类似,不同的是无论黏度改变与否,绝大部分气泡均聚集在上壁面处。且气泡加入后重力水平及黏度变化对液相湍流的影响是由气泡对湍流的调制作用和局部黏度变化共同作用的结果。
Abstract:
Bubbly flow has a wide application prospect in the fields of both industry and space, so it’s essential to perform detailed studies the on influences of gravity level and liquid-phase viscosity change on liquid turbulence. In this paper, the influences of gravity level and viscosity change on the liquid turbulence statistics and the gas phase volume fraction were investigated with numerical simulation method. The present results show that, under the normal gravity, the liquid turbulence intensity and Reynolds stress were modulated due to the microbubble injection, and most of the microbubbles gathered near the upper wall. However, under the zero gravity, the liquid turbulence intensity and Reynolds stress almost keep unchanged, and bubbles evenly distributed in a whole horizontal channel. The influences of viscosity and gravity on the turbulence intensity are similar, and the difference is that most of the bubbles are gathered near the upper wall regardless of the viscosity change or not. The studies also show that the influence of gravity level and viscosity change on the liquid turbulence is an emergent property resulting from turbulence modulation and local viscosity change.

参考文献/References:

[1]MOLIN D, MARCHIOLI C, SOLDATI A. Turbulence modulation and microbubble dynamics in vertical channel flow[J]. International Journal of Multiphase Flow, 2012, 42: 80-95.
[2]MURAI Y, FUKUDA H, OISHI Y, et al. Skin friction reduction by large air bubbles in a horizontal channel flow[J]. International Journal of Multiphase Flow, 2007, 33(2): 147-163.
[3]WITOLD B. Drag reduction in flow: review of applications, mechanism and prediction[J]. Journal of Industrial and Engineering Chemistry, 2008, 14(4): 409-416.
[4]庞明军,魏进家,宇波. 微重力值对气液两相流相分布及液相湍流统计量影响的数值研究[J]. 空间科学学报,2012,32(3):368-375.
[5]MOHANARANGAM K, CHEUNG S C P, TU J Y, et al. Numerical simulation of micro-bubble drag reduction using population balance model[J]. Ocean Engineering, 2009, 36(11): 863-872.
[6]ORTIZ-VILLAFUERTE J, HASSAN Y A. Investigation of microbubble boundary layer using particle tracking velocimetry[J]. Journal of Fluids Engineering, 2006, 128(3): 507-518.
[7]CHAHED J, COLIN C, MASBERNAT L, et al. Turbulence and phase distribution in bubbly pipe flow under microgravity condition[J]. Journal of Fluids Engineering-transactions of the Asme, 2002, 124(4): 951-956.
[8]TAKAMASA T, HAZUKU T, FUKAMACHI N, et al. Effect of gravity on axial development of bubbly flow at low liquid Reynolds number[J]. Experiments in Fluids, 2004, 37(5): 631-644.
[9]CHOI B, FUJII T, ASANO H, et al. A study of the flow characteristics in air-water two-phase flow under microgravity[J]. International Journal Series B-Fluids and Thermal Engineering, 2003, 46(2): 262-269.
[10]魏艳. 微气泡减阻数值模拟及其机理分析[D]. 哈尔滨:哈尔滨工程大学,2013.
[11]NIERHAUS T, ABEELE D V, DECONINCK H. Direct numerical simulation of bubbly flow in the turbulent boundary layer of a horizontal parallel plate electrochemical reactor[J]. International Journal of Heat and Fluid Flow, 2007, 28(4): 542-551.
[12]潘永琛. 槽道液固两相流动中微颗粒的湍流调制与减阻现象的数值研究[D]. 镇江:江苏大学,2012.
[13]ELKOW K J, REZKALLAR K S. Void fraction measurements in gas-liquid flows under 1-g and μ-g conditions using capacitance sensors[J]. International Journal of Multiphase Flow, 1997, 23(5): 815-829.
[14]MANNINEN M, TAIVASSALO V, KALLIO S. On the mixture model for multiphase flow[D]. Espoo: Technical Research Centre of Finland, 1996.
[15]邵悦,赵会军,王小兵. 水力旋流器油水分离模拟与实验研究[J]. 常州大学学报(自然科学版),2013,25(2):51-55.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金项目资助(51376026)。作者简介:徐一丹(1991—),女,安徽淮北人,硕士生。通讯联系人:庞明军(1976—),E-mail: pangmj@cczu.edu.cn
更新日期/Last Update: 2016-01-28