[1]周维友,潘九高,吴中,等.含Ni类水滑石催化氧气选择性氧化醇到醛[J].常州大学学报(自然科学版),2016,(04):1-6.[doi:10.3969/j.issn.2095-0411.2016.04.001]
 ZHOU Weiyou,PAN Jiugao,WU Zhong,et al.Selective Oxidation of Alcohol to Aldehyde with Oxygen under Ni-Containing Hydrotalcites[J].Journal of Changzhou University(Natural Science Edition),2016,(04):1-6.[doi:10.3969/j.issn.2095-0411.2016.04.001]
点击复制

含Ni类水滑石催化氧气选择性氧化醇到醛()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
期数:
2016年04期
页码:
1-6
栏目:
化学化工
出版日期:
2016-07-30

文章信息/Info

Title:
Selective Oxidation of Alcohol to Aldehyde with Oxygen under Ni-Containing Hydrotalcites
作者:
周维友潘九高吴中刘杰何明阳陈群
常州大学 石油化工学院,江苏 常州 213164
Author(s):
ZHOU Weiyou PAN Jiugao WU Zhong LIU Jie HE Mingyang CHEN Qun
School of Petrochemical Engineering,Changzhou University, Changzhou 213164, China
关键词:
类水滑石 选择氧化
Keywords:
nickel hydrotalcite-like compounds alcohol selective oxidation aldehyde
分类号:
O 643.36
DOI:
10.3969/j.issn.2095-0411.2016.04.001
文献标志码:
A
摘要:
采用共沉淀法制备了不同三价金属(Ga、Al及Cr)的含Ni类水滑石(LDH),对其结构、组成及相关物化性质进行了表征,并在氧气条件下研究了其催化醇选择性氧化制醛的性能。结果表明三价金属离子对类水滑石的催化性能具有重要影响,NiGa类水滑石表现出最佳的催化活性。在优化条件(苯甲醇1 mmol,催化剂Ni3Ga-LDH0.5 g,溶剂甲苯5 mL,反应温度80 ℃,反应时间4 h)下,苯甲醛的转化率达到97%,选择性大于99%。Ni3Ga-LDH在其它醇类化合物的选择性氧化反应中也表现出较好的催化性能。催化剂重复使用5次后活性无明显变化。
Abstract:
A series of Ni-containing hydrotalcites(LDH)with different trivalent metals(Ga, Al and Cr)have been synthesized by coprecipitation method, characterized and investigated in the aerobic oxidation of alcohols to aldehydes.The results indicated that the trivalent metal significantly affected the catalytic performance, and NiGa hydrotalcite exhibited the highest activity in the oxidation. Under the optimized conditions(benzyl alcohol 1 mmol, Ni3Ga-LDH 0.5 g, toluene 5 mL, reaction temperature 80 ℃, reaction time 4 h), the conversion of benzyl alcohol reached up to 97% with a more than 99% selectivity. Moreover,a broad scope of alcohols survived the reaction conditions, and the catalyst exhibited good reusability.

参考文献/References:

[1]DELAUDE L, LASZLO P. A novel oxidizing reagent based on potassium ferrate(VI)[J]. J Org Chem, 1996, 61: 6360-6370.
[2]TSURUYA S, OKAMOTO Y, KUWADA T. Benzyl alcohol oxidation over Y-type zeolite ion-exchanged with copper(II)ion[J]. J Catal, 1979, 56(1): 52-64.
[3]CHEN L, CHEN H, LUQUE R, et al. Metal-organic framework encapsulated Pd nanoparticles: towards advanced heterogeneous catalysts[J]. ChemSci, 2014, 5(10): 3708-3714.
[4]KANTAM M L, ARUNDHATHI R, LIKHAR P R, et al. Reusable copper-aluminum hydrotalcite/rac-BINOL system for room temperature selective aerobic oxidation of alcohols[J]. AdvSynCatal, 2009, 351(16): 2633-2637.
[5]LI Y, GAO Y, YANG C. A facile and efficient synthesis of polystyrene/gold-platinum composite particles and their application for aerobic oxidation of alcohols in water[J]. ChemCommun, 2015, 51(36): 7721-7724.
[6]YAMAGUCHI K, MIZUNO N. Supported ruthenium catalyst for the heterogeneous oxidation of alcohols with molecular oxygen[J]. AngewChemInt Ed, 2002, 41(23): 4538-4542.
[7]SUETO S, MASAI M. Catalytic activity of NaZSM-5 supported Cu catalysts with orwithout added alkali metal in benzyl alcoholoxidation[J]. J ChemSoc,Faraday Trans, 1997, 93(4): 659-664.
[8]IDAKA N, NISHIYAMA S, TSURUYA S. Role of potassium added to Ce/NaZSM-5 catalyst in partial oxidation activity of benzyl alcohol[J]. PhysChemChemPhys, 2001, 3(10): 1918-1924.
[9]NOJIMA S, KAMATA K, SUZUKI K, et al. Selective oxidation with aqueous hydrogen peroxide by [PO4 {WO(O2)2}4]3-supported on zinc-modified tin dioxide[J]. ChemCatChem, 2015, 7(7): 1097-1104.
[10]SHEN D, MIAO C, XU D, et al. Highly efficient oxidation of secondary alcohols to ketones catalyzed by manganese complexes of N4 ligands with H2O2[J]. Org lett, 2014, 17(1): 54-57.
[11]YE Z, FU Z, ZHONG S, et al. Selective oxidation of alcohols with hydrogen peroxide catalyzed by hexadentate binding 8-quinolinolato manganese(III)complexes[J]. J Catal, 2009, 261(1): 110-115.
[12]PETERSON B M, HERRIED M E, NEVE R L, et al. Oxidation of primary and secondary benzylic alcohols with hydrogen peroxide and tert-butyl hydroperoxide catalyzed by a “helmet” phthalocyaninato iron complex in the absence of added organic solvent[J]. Dalton Trans, 2014, 43(48): 17899-17903.
[13]SRIVASTAVA S, Singh S. Rh(III)catalyzed oxidation of cyclic alcohols by sodium periodate in acidic medium[J]. Asian J Chem, 2008, 20(6): 4773-4780.
[14]HUANG X, WANG X, WANG X, et al. P123-stabilized Au-Ag alloy nanoparticles for kinetics of aerobic oxidation of benzyl alcohol in aqueous solution[J]. J Catal, 2013, 301: 217-226.
[15]NOUJIMA A, MISUDOME T, MIZUGAKI T, et al. Selective deoxygenation of epoxides to alkenes with molecular hydrogen using a hydrotalcite-supported gold catalyst: aconcerted effect between gold nanoparticles and basic sites on a support[J]. AngewChemInt Ed, 2011, 50(13): 2986-2989.
[16]MITSUDOME T, NOUJIMA A, MIZUGAKI T, et al. Efficient aerobic oxidation of alcohols using a hydrotalcite-supported gold nanoparticle catalyst[J]. AdvSynCatal, 2009, 351(11/12): 1890-1896.
[17]YAMADA Y, ARAKAWA T, HOCKE H, et al. An amphiphilic resin-dispersion of nanoparticles of platinum(ARP-Pt): ahighly active and recyclable catalyst for the aerobic oxidation of a variety of alcohols in water[J]. Chem Asian J, 2009, 4(7): 1092-1098.
[18]WANG H, WANG C, YAN H, et al. Precisely-controlled synthesis of Au@ Pd core-shell bimetallic catalyst via atomic layer deposition for selective oxidation of benzyl alcohol[J]. J Catal, 2015, 324: 59-68.
[19]LAYEK K, MAHESWARAN H, ARUNDHATHI R, et al. Nanocrystallinemagnesium oxide stabilized palladium(0): an efficient reusable catalyst for room temperature selective aerobic oxidation of alcohols[J]. AdvSynCatal, 2011, 353(4): 606-616.
[20]YAMAGUCHI K, KIM J W, HE J, et al. Aerobic alcohol oxidation catalyzed by supported ruthenium hydroxides[J]. J Catal, 2009, 268(2): 343-349.
[21]CHOUDARY B M, KANTAM M L, RAHMAN A, et al. The first example of activation of molecular oxygen by nickel in Ni-Al hydrotalcite: anovel protocol for the selective oxidation of alcohols[J]. AngewChemInt Ed, 2001, 40(4): 763-766.
[22]áLVAREZ A, TRUJILLANO R, RIVES V. Differently aged gallium-containing layered double hydroxides[J]. Appl Clay Sci, 2013, 80: 326-333.
[23]JOOBBáGY M, BLESA M A, REGAZZONI A E. Homogeneous precipitation of layered Ni(II)-Cr(III)double hydroxides[J]. J Colloid InterfSci, 2007, 309(1): 72-77.
[24]ANGELESCU E, PAVEL O D, BIRJEGA R, et al. The impact of the “memory effect” on the catalytic activity of Mg/Al; Mg, Zn/Al; Mg/Al, Ga hydrotalcite-like compounds used as catalysts for cyclohexene epoxidation[J]. ApplCatal A Gen, 2008, 341(1): 50-57.
[25]刘青青, 郎春燕, 黄军左, 等. 类水滑石的制备及其焙烧产物催化苯制苯酚[J]. 工业催化, 2012, 4(20): 60-63.
[26]XIE X, YAN K, LI J, et al. Efficient synthesis of benzoin methyl ether catalyzed by hydrotalcite containing cobalt[J]. CatalCommun, 2008, 9(6): 1128-1131.
[27]LI F, ZHANG L, EVANS D G, et al. Structure and surface chemistry of manganese-doped copper-based mixed metal oxides derived from layered double hydroxides[J]. Colloid Surf. A-Physicochem. Eng. Asp, 2004, 244(1): 169-177.
[28]KANNAN S, DUBEY A, KNOZINGER H. Synthesis and characterization of CuMgAl ternary hydrotalcites as catalysts for the hydroxylation of phenol[J]. J Catal, 2005, 231(2): 381-392.
[29]TYAGI B, SHARMA U, JASRA R V. Epoxidation of styrene with molecular oxygen over binary layered double hydroxide catalysts[J]. ApplCatal A Gen, 2011, 408(1): 171-177.
[30]CHOUDHARY V R, CHAUDHARI P A, NARKHEDE V S. Solvent-free liquid phase oxidation of benzyl alcohol to benzaldehyde by molecular oxygen using non-noble transition metal containing hydrotalcite-like solid catalysts[J]. CatalCommun, 2003, 4(4): 171-175.
[31]XUE M, CHEN H, SHEN J. Surface acidic and redox properties of V-Ag-O/TiO2catalysts for the selective oxidation of toluene to benzaldehyde[J]. Catallett, 2009, 128(3/4): 373-378.

相似文献/References:

[1]张智宏,王玉峰,张少瑜.光度法测定镍含量存在的问题[J].常州大学学报(自然科学版),2010,(01):57.
 ZHANG Zhi -ho ng,WANG Yu -feng,ZHANG Shao -yu.Problems on Measuring Content of Nickel by Spectrophotometry[J].Journal of Changzhou University(Natural Science Edition),2010,(04):57.
[2]王茂华,汤庆华,姚 超,等.金属Ni 掺杂对中间相碳微球/ 石墨复合材料烧结性能的影响[J].常州大学学报(自然科学版),2010,(03):13.
 WANG Mao- hua,T ANG Qing- hua,YAO Chao,et al.Effect of Ni Dopant on the Sintering Behavior of MCMB/Graphite Composite[J].Journal of Changzhou University(Natural Science Edition),2010,(04):13.
[3]王 非,毕研帅,方启华,等.一步法制备火龙果型Ni/C用于肉桂醛加氢反应[J].常州大学学报(自然科学版),2019,31(06):11.
 WANG Fei,BI Yanshuai,FANG Qihua,et al.A Facile One-Pot Synthesis of Dragon Fruit-Like Ni/C Composites Using Glucose as Template for Selective Hydrogenation of Cinnamaldehyde[J].Journal of Changzhou University(Natural Science Edition),2019,31(04):11.
[4]张后甫,郝晓琼,银凤翔,等.Ni/de-ZSM催化剂的制备及其氨分解制氢性能[J].常州大学学报(自然科学版),2022,34(02):8.[doi:10.3969/j.issn.2095-0411.2022.02.002]
 ZHANG Houfu,HAO Xiaoqiong,YIN Fengxiang,et al.Preparation of Ni/de-ZSM Catalyst and Its Performance in Hydrogen Production by Ammonia Decomposition[J].Journal of Changzhou University(Natural Science Edition),2022,34(04):8.[doi:10.3969/j.issn.2095-0411.2022.02.002]

备注/Memo

备注/Memo:
收稿日期:2016-05-17。基金项目:国家自然科学基金资助项目(2001403018); 江苏省产学研前瞻联合创新资金——前瞻性联合研究项目(BY2014037-03)。作者简介:周维友(1981—),男,江苏盐城人,博士,讲师,主要从事非均相催化及选择性氧化等方面的研究。通讯联系人:何明阳(1962—),E-mail: hemingyangjpu@yahoo.com
更新日期/Last Update: 2016-08-30