[1]王艳宾,王腾,罗钟琳,等.基于主链中含有呋喃基窄能带隙聚合物的设计与合成[J].常州大学学报(自然科学版),2016,(04):36-42.[doi:10.3969/j.issn.2095-0411.2016.04.007]
 WANG Yanbin,WANG Teng,LUO Zhonglin,et al.Molecular Design and Synthesis of Low-Bandgap Polymers Containing Furan in the Main Chain[J].Journal of Changzhou University(Natural Science Edition),2016,(04):36-42.[doi:10.3969/j.issn.2095-0411.2016.04.007]
点击复制

基于主链中含有呋喃基窄能带隙聚合物的设计与合成()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
期数:
2016年04期
页码:
36-42
栏目:
材料科学与工程
出版日期:
2016-07-30

文章信息/Info

Title:
Molecular Design and Synthesis of Low-Bandgap Polymers Containing Furan in the Main Chain
作者:
王艳宾王腾罗钟琳王标兵
常州大学 材料科学与工程学院,江苏 常州 213164
Author(s):
WANG Yanbin WANG Teng LUO Zhonglin WANG Biaobing
School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
关键词:
窄能带隙 噻吩 呋喃 溶解性 能级分布
Keywords:
low-bandgap thiophene furan solubility energy level
分类号:
O 633.4
DOI:
10.3969/j.issn.2095-0411.2016.04.007
文献标志码:
A
摘要:
为了提高窄能带隙聚合物的溶解性和优化窄能带隙聚合物的能级分布,分别以4,7-双(5’-溴-2’-噻吩)-2,1,3-苯并噻唑(DTBT)和4,7-双(5’-溴-2’-呋喃)-2,1,3-苯并噻唑(DFBT)为受体,采用给体-受体交替排列的策略,分别合成了2个窄能带隙共轭聚合物(PCDTBT, PCDFBT)。通过取代主链中的噻吩基团,基于呋喃的窄能带隙聚合物PCDFBT具有更好的溶解性和更低的最高未占轨道。而且,相比聚合物PCDTBT,呋喃取代的聚合物PCDFBT的最大吸收峰红移了20 nm,这表明聚合物PCDFBT具有更好的光学吸收能力。
Abstract:
To improve the solubility and optimize energy levels of low-bandgap polymers, two conjugated polymers based 4,7-bis(5’-bromo-2’-thiophene)-2,1,3-benzodiathiazole(DTBT)and 4,7-bis(5’-bromo-2’-furan)-2,1,3-benzodiathiazole(DFBT)as acceptor were prepared by donor-acceptor alternating strategy. Through replacing thiophene unit with furan unit in the polymer main chain, the polymer(PCDFBT)with furan unit in the backbone exhibited a deeper highest occupied molecular orbital(HOMO)energy levels compared with the polymer(PCDTBT)containing thiophene unit in the backbone. Furthermore, the maximum absorption peak of the furan substituent polymer PCDFBT was red shift 20 nm compared with PCDTBT, which indicated PCDFBT showed better exciton harvesting ability.

参考文献/References:

[1]LU L, ZHENG T, WU Q, et al. Recent advances in bulk heterojunction polymer solar cells[J]. Chemical Reviews, 2015, 115:12666-12731.
[2]YEH N, YEH P. Organic solar cells: Their developments and potentials[J]. Renewable and Sustainable Energy Reviews, 2013, 21:421-431.
[3]LI G, ZHU R, YANG Y. Polymer solar cells[J]. Nature Photonics, 2012, 6:153-161.
[4]DOU L, LIU Y, HONG Z, et al. Low-bandgap near-IR conjugated polymers/molecules for organic electronics[J]. Chemical Reviews, 2015, 115:12633-12665.
[5]XU T, YU L. How to design low bandgap polymers for highly efficient organic solar cells[J]. Materials Today, 2014, 17:11-15.
[6]BOUDREAULT P L T, NAJARI A, LECLERC M. Processable low-bandgap polymers for photovoltaic applications[J]. Chemistry of Materials, 2011, 23:456-469.
[7]MEYER F. Fluorinated conjugated polymers in organic bulk heterojunction photovoltaic solar cells[J]. Progress in Polymer Science, 2015, 47:70-91.
[8]LIANG Y, FENG D, WU Y, et al. Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties[J]. Journal of the American Chemical Society, 2009, 131:7792-7799.
[9]WU F, ZHA D, CHEN L, et al. Photovoltaics of donor-acceptor polymers based on benzodithiophene with lateral thiophenyl and fluorinated benzothiadiazole[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2013, 51:1506-1511.
[10]BRONSTEIN H, FROST J M, HADIPOUR A, et al. Effect of fluorination on the properties of a donor-acceptor copolymer for use in photovoltaic cells and transistors[J]. Chemistry of Materials, 2013, 25:277-285.
[11]DUTTA G K, KIM T, CHOI H, et al. Synthesis of fluorinated analogues of a practical polymer TQ for improved open-circuit voltages in polymer solar cells[J]. Polymer Chemistry, 2014,5:2540-2547.
[12]SON H J, WANG W, XU T, et al. Synthesis of fluorinated polythienothiophene-co benzodithiophenes and effect of fluorination on the photovoltaic properties[J]. Journal of the American Chemical Society, 2011, 133:1885-1894.
[13]WOO C H, BEAUJUGE P M, HOLCOMBE T W, et al. Incorporation of furan into low band-gap polymers for efficient solar cells[J]. Journal of the American Chemical Society, 2010, 132:15547-15549.
[14]EL J M, KOBILKA B M, and HALE B J. Optimizing the performance of conjugated polymers in organic photovoltaic cells by traversing group 16[J]. Macromolecules, 2014, 47:7253-7271.
[15]HUO L, YE L, WU Y, et al. Conjugated and nonconjugated substitution effect on photovoltaic properties of benzodifuran-based photovoltaic polymers[J]. Macromolecules, 2012, 45:6923-6929.
[16]SVENSSON M. ZHANG F, VEENSTRA S C, et al. High-performance polymer solar cells of an alternating polyfluorene copolymer and a fullerene derivative[J]. Advance Materials, 2003, 15:988-991.
[17]ALLARD N, AICH R B, GENDRON D, et al. Germafluorenes: new heterocycles for plastic electronics[J]. Macromolecules, 2010, 43:2328-2333.
[18]BOUDREAULT P L T, MICHAUD A, LECLERC M. A new poly(2,7-dibenzosilole)derivative in polymer solar cells[J]. Macromolecular Rapid Communications, 2007, 28:2176-2179.
[19]BLOUIN N, MICHAUD A, LELERC M. A low-bandgap poly(2,7-carbazole)derivative for use in high-performance solar cells[J]. Advanced Materials, 2007, 19:2295-2300.
[20]ORIOU J, NG F F, HADZIIOANNOU G, et al. Synthesis and structure-property relationship of carbazole-alt-benzothiadiazole copolymers[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2015, 53:2059-2068.
[21]JADHAV T, MISRA R, BISWAS S, et al. Bulk heterojunction organic solar cells based on carbazole-BODIPY conjugate small molecules as donors with high open circuit voltage[J]. Physical Chemistry Chemical Physics, 2015, 17:26580-26588.
[22]LI M, NI W, FENG H, et al. A low bandgap carbazole based small molecule for organic solar cells[J]. Organic Electronics, 2015, 24:89-95.
[23]SUN J, ZHU Y, XU X, et al. 4,5-ethylene-2,7-carbazole-based medium-bandgap conjugated polymers with low-lying HOMO levels toward efficient polymer solar cells with high open-circuit voltage[J]. Macromolecular Chemistry and Physics, 2014, 215:1052-1059.
[24]XU S, LIU Y, LI J, et al. Synthesis and characterization of low-band-gap conjugated polymers containing phenothiazine and benzo-2,1,3-thia-/seleno-diazole[J]. Polymers for Advanced Technologies, 2010, 21:663-668.
[25]LIU B, NAJARI A, PAN C, et al. New low bandgap dithienylbenzothiadiazole vinylene based copolymers: synthesis and photovoltaic properties[J]. Macromolecular Rapid Communication, 2010, 31:391-398.
[26]ZHOU Y, HE Q, YANG Y, et al. Binaphthyl-containing green- and red-emitting molecules for solution-processable organic light-emitting diodes[J]. Advanced Functional Materials, 2008, 18:3299-3306.

备注/Memo

备注/Memo:
收稿日期:2016-01-14。基金项目:常州大学科技项目(ZMF15020116)。作者简介:王艳宾(1983—),男,河南漯河人,博士,讲师,主要从事有机光伏研究。文章编号:2095-0411(2016)04-0036-07
更新日期/Last Update: 2016-08-30