参考文献/References:
[1]TOKUNAGA M, AKAKI M, ITO T, et al. Magnetic control of transverse electric polarization in BiFeO3[J]. Nat Commu, 2015, 6: 5878-5881.
[2]TAMILSELVAN A, BALAKUMAR S, SAKAR M, et al. Role of oxygen vacancy and Fe-O-Fe bond angle in compositional, magnetic, and dielectric relaxation on Eu-substituted BiFeO3 nanoparticles [J]. Dalton T, 2014, 43(15): 5731-5738.
[3]DUTTA D P, MANDAL B P, MUKADAM M D, et al. Improved magnetic and ferroelectric properties of Sc and Ti codoped multiferroic nano BiFeO3 prepared via sonochemical synthesis [J]. Dalton T, 2014, 43(21): 7838-7846.
[4]ZHANG H, LIU W F, WU P, et al. Novel behaviors of multiferroic properties in Na-doped BiFeO3 nanoparticles [J]. Nanoscale, 2014, 6(18):10831-10838.
[5]SHIROLKAR M M, HAO C S, DONG X L, et al. Tunable multiferroic and bistable/ complementary resistive switching properties of dilutely Li-doped BiFeO3 nanoparticles: an effect of aliovalent substitution [J]. Nanoscale, 2014, 6(9): 4735-4744.
[6]DU Y, CHENG Z X, DOU S X, et al. Fabrication, magnetic, and ferroelectric properties of multiferroic BiFeO3 hollow nanoparticles[J]. J Appl Phys, 2011, 109: 073903.
[7]NURAJE N, SU K. Perovskite ferroelectric nanomaterials [J]. Nanoscale, 2013, 5(19): 8752-8780.
[8]LIU Y Y, VASUDEVAN R K, PAN K, et al. Controlling magnetoelectric coupling by nanoscale phase transformation in strain engineered bismuth ferrite [J]. Nanoscale, 2012, 4(10): 3175-3183.
[9]XU Q, SOBHAN M, YANG Q, et al. The role of Bi vacancies in the electrical conduction of BiFeO3: a first-principles approach [J]. Dalton T, 2014, 43(28): 10787-10793.
[10]BAHOOSH S G, WESSELINOWA J M. Origin of the different multiferroism in BiFeO3 and GaFeO3[J]. J Appl Phys, 2013, 113: 063905.
[11]WESSELINOWA J M, APOSTOLOVA I. Theoretical study of multiferroic BiFeO3 nanoparticles [J]. J Appl Phys, 2008, 104: 084108.
[12]MICHAEL T, TRIMPER S. Excitation spectrum of multiferroics at finite temperatures [J]. Phys Rev B, 2011, 83: 134409.
[13]JEONG J, GOREMYCHKIN E A, GUIDI T, et al. Spin wave measurements over the full brillouin zone of multiferroic BiFeO3[J]. Phys Rev Lett, 2012, 108: 077202.
[14]JEONG J, MANH D L,BOURGES P, et al. Temperature-Dependent interplay of Dzyaloshinskii-Moriya interaction and single-ion anisotropy in multiferroic BiFeO3[J]. Phys Rev Lett, 2014, 113: 107202.
[15]CORAIN B, SCHMID G, TOSHIMA N. Metal nanoclusters in catalysis and materials science(影印版)[M]. 北京:科学出版社,2008:50.
[16]SERGIENKO I A, DAGOTTO E. Role of the Dzyaloshinskii-Moriya interaction in multiferroic perovskites [J]. Phys Rev B, 2006, 73: 094434.
[17]KADMOSTEVA A M, ZVEZDIN A, POPOV Y F, et al. Space-time parity violation and magnetoelectric interactions in antiferromagnets[J]. JETP Lett, 2004, 79: 571-581.
[18]RANDY S F, JASON T H, NOBUO F, et al. Spin state and spectroscopic modes of multiferroic BiFeO3[J]. Phys Rev B, 2013, 87:134416.
[19]GAO F, CHEN X Y, KUIBO Y, et al. Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles [J]. Adv Matter, 2007, 19: 2889-2892.
[20]WANG LIN-CHENG, YAN JUN-YAN, YI XUE-XI. Thermal quantum discord in Heisenberg models with Dzyaloshinski-Moriya interaction [J]. Chin Phys B, 2011, 20: 040305.
[21]LIU G H, YOU W L, LI W, et al. Quantum phase transitions and string orders in the spin-1/2 Heisenberg-Ising alternating chain with Dzyaloshinskii-Moriya interaction [J]. J Phys Condens Matter, 2015, 27: 165602.
[22]WESSELINOWA I M, APOSTOLOV A T, MARINOV M S. The Green’s function technique for spin-phonon interactions in squaric acid [J]. J Phys Condens Matter, 1995, 7: 1701-1709.
[23]TSERKOVNIKOV Y A. Decoupling of chains of equations for two-time Green’s functions [J]. Teor Mat Fiz, 1971,7: 250-256
[24]KORECKI J, PRZYBYLSKI M, GRADMANN U. Thermal variation and spatial distribution of local magnetization in ultrathin Fe(110)films [J]. J Magn Magn Matter, 1990, 89: 325.
[25]PARK T J, GEORGIA C P, ARTHUR J V, et al. Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles [J]. Nano Lett, 2007, 7: 766-772.
[26]SINGH M K, PRELLIER W, SINGH M P, et al. Spin-glass transition in single-crystal BiFeO3[J]. Phys Rev B, 2008, 77: 144403.
[27]RAMACHANDRAN R. Low temperature magnetocaloric effect in polycrystalline ceramics [J]. Appl Phys Lett, 2009, 95: 142505.
[28]JAISWAL A, DAS R, VIVEKANAND K, et al. Effect of reduced particle size on the magnetic properties of chemically synthesized BiFeO3 nanocrystals [J]. J Phys Chem C, 2010, 114: 2108-2115.
[29]MARTINEZ B, OBRADORS X, BALCELLS L, et al. Low temperature surface spin-glass transition in γ-Fe2O3 nanoparticles [J]. Phys Rev Lett, 1998, 80: 181-184.
[30]LIANG F, JIAN L, SHENG J U, et al. Experimental and theoretical evidence of enhanced ferromagnetism in sonochemical synthesized BiFeO3 nanoparticles [J]. Appl Phys Lett, 2010, 97: 242501.
[31]KOSHIZUKA N, USHIODA S. Inelastic-light-scattering study of magnon softening in ErFeO3[J]. Phys Rev B, 1980, 22: 5394.
[32]CHUKALKIN Y G, GOSHCHITSKII B N. Radiation amorphization of orthoferrite YFeO3[J]. Phys Status Solidi A, 2003, 200: 9-11
[33]GUO R Q, FANG L, DONG W, et al. Enhanced photocatalytic activity and ferromagnetism in Gd doped BiFeO3 nanoparticles [J]. J Phys Chem C, 2010, 114: 21390-21396.
[34]ZHANG S T, ZHANG Y, LU M H, et al. Substitution-induced phase transition and enhanced multiferroic properties of Bi1-xLaxFeO3 ceramics [J]. Appl Phys Lett, 2006, 88: 162901.
[35]YUAN G L, OR S W, LIU J M, et al. Structural transformation and ferroelectromagnetic behavior in single-phase BiNdFeO multiferroic ceramics[J]. Appl Phys Lett, 2006, 89: 052905.
[36]YUAN G L, OR S W. Multiferroicity in polarized single-phase BiSmFeO ceramics [J]. J Appl Phys, 2006, 100: 024109.
[37]LIU J, FANG L, ZHENG F G, et al. Enhancement of magnetization in Eu doped BiFeO3 nanoparticles [J]. Appl Phys Lett, 2009, 95: 022511.
[38]ZHONG C, FANG J. The coupling effect between ferroelectric and frustrated antiferromagnetic ordering in hexagonal ferroelectromagnet [J]. Solid State Commun, 2003, 128: 449-453.