[1]曹先胜,吉高峰,罗炳成.BiFeO3纳米颗粒的磁性和铁电性研究[J].常州大学学报(自然科学版),2016,(04):48-53.[doi:10.3969/j.issn.2095-0411.2016.04.009]
 CAO Xiansheng,JI Gaofeng,LUO Bingcheng.Magnetic and Ferroelectric Properties of BiFeO3 Nanoparticles[J].Journal of Changzhou University(Natural Science Edition),2016,(04):48-53.[doi:10.3969/j.issn.2095-0411.2016.04.009]
点击复制

BiFeO3纳米颗粒的磁性和铁电性研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
期数:
2016年04期
页码:
48-53
栏目:
材料科学与工程
出版日期:
2016-07-30

文章信息/Info

Title:
Magnetic and Ferroelectric Properties of BiFeO3 Nanoparticles
作者:
曹先胜1吉高峰1罗炳成2
1.常州大学 数理学院,江苏 常州 213164; 2.西北工业大学 理学院,陕西 西安 710072
Author(s):
CAO Xiansheng1 JI Gaofeng1 LUO Bingcheng2
1.School of Mathematics and Physics, Changzhou University, Changzhou 213164, China; 2.School of Science, Northwestern Polytechnical University, Xi’an 710072, China
关键词:
BiFeO3纳米颗粒 DM相互作用 相变
Keywords:
BiFeO3 nanoparticle Dzyaloshinskii-Moriya interaction phase-transition
分类号:
O 469
DOI:
10.3969/j.issn.2095-0411.2016.04.009
文献标志码:
A
摘要:
在重整化Dzyaloshinskii-Moriya相互作用的基础上,利用格林函数方法对BiFeO3(BFO)纳米颗粒的多铁性能进行了微观研究。研究发现磁化强度和电极化强度均随温度升高而逐渐减小; 当温度分别升高到磁性转变温度TN 和铁电转变温度TC时,磁化强度和电极化强度分别变为零; TNTC分别随磁性自旋间的耦合常数(Jb, Js )和铁电性赝自旋间的耦合常数(Bb, Bs)增加而向高温区移动; 当磁电耦合常数(g)增大时,磁化强度和电极化强度均增大。研究还发现磁化曲线在转变温度TP为40 K附近处有一峰值,这是纳米量级BFO的零场冷却曲线在低温区所特有的一种奇特现象。
Abstract:
Based on the renormalization of Dzyaloshinskii-Moriya interaction(DMI), the multiferroic properties of BiFeO3(BFO)nanoparticles were investigated by using Green’s function technique. It was found that the magnetization(polarization)decreased and vanished continuously at the magnetic transition temperature TN(ferroelectric transition temperature TC)as the temperature increased. It was found that the phase-transition temperature TN(TC)shifted to higher values as the exchange coupling constants Jb and Js (Bb and Bs)increased. It was also found that the magnetization and the polarization were both enhanced as the magnetoelectric coupling constant(g)increased. For this reason, the magnetic and the ferroelectric phase coexisted in this region. In addition, it was observed that there existed a cusp around 40 K, which were unique to the nanosize effect of BFO.

参考文献/References:

[1]TOKUNAGA M, AKAKI M, ITO T, et al. Magnetic control of transverse electric polarization in BiFeO3[J]. Nat Commu, 2015, 6: 5878-5881.
[2]TAMILSELVAN A, BALAKUMAR S, SAKAR M, et al. Role of oxygen vacancy and Fe-O-Fe bond angle in compositional, magnetic, and dielectric relaxation on Eu-substituted BiFeO3 nanoparticles [J]. Dalton T, 2014, 43(15): 5731-5738.
[3]DUTTA D P, MANDAL B P, MUKADAM M D, et al. Improved magnetic and ferroelectric properties of Sc and Ti codoped multiferroic nano BiFeO3 prepared via sonochemical synthesis [J]. Dalton T, 2014, 43(21): 7838-7846.
[4]ZHANG H, LIU W F, WU P, et al. Novel behaviors of multiferroic properties in Na-doped BiFeO3 nanoparticles [J]. Nanoscale, 2014, 6(18):10831-10838.
[5]SHIROLKAR M M, HAO C S, DONG X L, et al. Tunable multiferroic and bistable/ complementary resistive switching properties of dilutely Li-doped BiFeO3 nanoparticles: an effect of aliovalent substitution [J]. Nanoscale, 2014, 6(9): 4735-4744.
[6]DU Y, CHENG Z X, DOU S X, et al. Fabrication, magnetic, and ferroelectric properties of multiferroic BiFeO3 hollow nanoparticles[J]. J Appl Phys, 2011, 109: 073903.
[7]NURAJE N, SU K. Perovskite ferroelectric nanomaterials [J]. Nanoscale, 2013, 5(19): 8752-8780.
[8]LIU Y Y, VASUDEVAN R K, PAN K, et al. Controlling magnetoelectric coupling by nanoscale phase transformation in strain engineered bismuth ferrite [J]. Nanoscale, 2012, 4(10): 3175-3183.
[9]XU Q, SOBHAN M, YANG Q, et al. The role of Bi vacancies in the electrical conduction of BiFeO3: a first-principles approach [J]. Dalton T, 2014, 43(28): 10787-10793.
[10]BAHOOSH S G, WESSELINOWA J M. Origin of the different multiferroism in BiFeO3 and GaFeO3[J]. J Appl Phys, 2013, 113: 063905.
[11]WESSELINOWA J M, APOSTOLOVA I. Theoretical study of multiferroic BiFeO3 nanoparticles [J]. J Appl Phys, 2008, 104: 084108.
[12]MICHAEL T, TRIMPER S. Excitation spectrum of multiferroics at finite temperatures [J]. Phys Rev B, 2011, 83: 134409.
[13]JEONG J, GOREMYCHKIN E A, GUIDI T, et al. Spin wave measurements over the full brillouin zone of multiferroic BiFeO3[J]. Phys Rev Lett, 2012, 108: 077202.
[14]JEONG J, MANH D L,BOURGES P, et al. Temperature-Dependent interplay of Dzyaloshinskii-Moriya interaction and single-ion anisotropy in multiferroic BiFeO3[J]. Phys Rev Lett, 2014, 113: 107202.
[15]CORAIN B, SCHMID G, TOSHIMA N. Metal nanoclusters in catalysis and materials science(影印版)[M]. 北京:科学出版社,2008:50.
[16]SERGIENKO I A, DAGOTTO E. Role of the Dzyaloshinskii-Moriya interaction in multiferroic perovskites [J]. Phys Rev B, 2006, 73: 094434.
[17]KADMOSTEVA A M, ZVEZDIN A, POPOV Y F, et al. Space-time parity violation and magnetoelectric interactions in antiferromagnets[J]. JETP Lett, 2004, 79: 571-581.
[18]RANDY S F, JASON T H, NOBUO F, et al. Spin state and spectroscopic modes of multiferroic BiFeO3[J]. Phys Rev B, 2013, 87:134416.
[19]GAO F, CHEN X Y, KUIBO Y, et al. Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles [J]. Adv Matter, 2007, 19: 2889-2892.
[20]WANG LIN-CHENG, YAN JUN-YAN, YI XUE-XI. Thermal quantum discord in Heisenberg models with Dzyaloshinski-Moriya interaction [J]. Chin Phys B, 2011, 20: 040305.
[21]LIU G H, YOU W L, LI W, et al. Quantum phase transitions and string orders in the spin-1/2 Heisenberg-Ising alternating chain with Dzyaloshinskii-Moriya interaction [J]. J Phys Condens Matter, 2015, 27: 165602.
[22]WESSELINOWA I M, APOSTOLOV A T, MARINOV M S. The Green’s function technique for spin-phonon interactions in squaric acid [J]. J Phys Condens Matter, 1995, 7: 1701-1709.
[23]TSERKOVNIKOV Y A. Decoupling of chains of equations for two-time Green’s functions [J]. Teor Mat Fiz, 1971,7: 250-256
[24]KORECKI J, PRZYBYLSKI M, GRADMANN U. Thermal variation and spatial distribution of local magnetization in ultrathin Fe(110)films [J]. J Magn Magn Matter, 1990, 89: 325.
[25]PARK T J, GEORGIA C P, ARTHUR J V, et al. Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles [J]. Nano Lett, 2007, 7: 766-772.
[26]SINGH M K, PRELLIER W, SINGH M P, et al. Spin-glass transition in single-crystal BiFeO3[J]. Phys Rev B, 2008, 77: 144403.
[27]RAMACHANDRAN R. Low temperature magnetocaloric effect in polycrystalline ceramics [J]. Appl Phys Lett, 2009, 95: 142505.
[28]JAISWAL A, DAS R, VIVEKANAND K, et al. Effect of reduced particle size on the magnetic properties of chemically synthesized BiFeO3 nanocrystals [J]. J Phys Chem C, 2010, 114: 2108-2115.
[29]MARTINEZ B, OBRADORS X, BALCELLS L, et al. Low temperature surface spin-glass transition in γ-Fe2O3 nanoparticles [J]. Phys Rev Lett, 1998, 80: 181-184.
[30]LIANG F, JIAN L, SHENG J U, et al. Experimental and theoretical evidence of enhanced ferromagnetism in sonochemical synthesized BiFeO3 nanoparticles [J]. Appl Phys Lett, 2010, 97: 242501.
[31]KOSHIZUKA N, USHIODA S. Inelastic-light-scattering study of magnon softening in ErFeO3[J]. Phys Rev B, 1980, 22: 5394.
[32]CHUKALKIN Y G, GOSHCHITSKII B N. Radiation amorphization of orthoferrite YFeO3[J]. Phys Status Solidi A, 2003, 200: 9-11
[33]GUO R Q, FANG L, DONG W, et al. Enhanced photocatalytic activity and ferromagnetism in Gd doped BiFeO3 nanoparticles [J]. J Phys Chem C, 2010, 114: 21390-21396.
[34]ZHANG S T, ZHANG Y, LU M H, et al. Substitution-induced phase transition and enhanced multiferroic properties of Bi1-xLaxFeO3 ceramics [J]. Appl Phys Lett, 2006, 88: 162901.
[35]YUAN G L, OR S W, LIU J M, et al. Structural transformation and ferroelectromagnetic behavior in single-phase BiNdFeO multiferroic ceramics[J]. Appl Phys Lett, 2006, 89: 052905.
[36]YUAN G L, OR S W. Multiferroicity in polarized single-phase BiSmFeO ceramics [J]. J Appl Phys, 2006, 100: 024109.
[37]LIU J, FANG L, ZHENG F G, et al. Enhancement of magnetization in Eu doped BiFeO3 nanoparticles [J]. Appl Phys Lett, 2009, 95: 022511.
[38]ZHONG C, FANG J. The coupling effect between ferroelectric and frustrated antiferromagnetic ordering in hexagonal ferroelectromagnet [J]. Solid State Commun, 2003, 128: 449-453.

备注/Memo

备注/Memo:
收稿日期:2016-02-24。基金项目:国家自然科学基金资助项目(60171034)。作者简介:曹先胜(1977—),男,安徽安庆人,博士,讲师,主要从事功能材料研究。
更新日期/Last Update: 2016-08-30