参考文献/References:
[1]唐家桓,周顺桂,袁勇,等. 天然生物地球电池效应、形成机制及生态学意义[J]. 生态学报,2015, 35(10): 3180-3189.
[2]吴云当,李芳柏,刘同旭. 土壤微生物-腐殖质-矿物间的胞外电子传递机制研究进展[J]. 土壤学报,2016,53(2): 277-291.
[3]秦薇,梁玉婷,刘勇俊,等. 石油污染土壤中降解菌的分离鉴定及降解基因筛选[J]. 常州大学学报(自然科学版),2012, 24(4): 1-7.
[4]冯胜,李定龙,高光. 淡水湖泊沉积物微生物多样性研究方法进展[J]. 常州大学学报(自然科学版),2010,22(2): 66-72.
[5]RODEN E E, WETZEL R G. Organic carbon oxidation and methane production by microbial Fe(Ⅲ)oxide reduction in vegetated and unvegetated freshwater wetland sediments[J]. Limnol Oceanogr, 1996, 41: 1733-1748.
[6]THAMDRUP B. Bacterial manganese and iron reduction in aquatic sediments[J]. Adv Microb Ecol, 2000,16: 41-84.
[7]DONG H, FREDRICKSON J K, KENNEDY D W, et al. Mineral transformation associated with the microbial reduction of magnetite[J]. Chem Geol, 2000, 169: 299-318.
[8]HANSEL C M, BENNER S G, NEISS J, et al. Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow[J]. Geochim Cosmochim Acta, 2003, 67: 2977-2992.
[9]CHACON N, SILVER W L, DUBINSKY E A, et al. Iron reduction and soil phosphorous solubilization in humid tropical forests soils: the roles of labile carbon pools and an electron shuttle compound[J]. Biogeochemistry, 2006, 78: 67-84.
[10]LOVLEY D R, ANDERSON R T. Influence of dissimilatory metal reduction on the fate of organic and metal contaminants in the subsurface[J]. Hydrogeol J, 2000, 8: 77-88.
[11]FREDRICKSON J K, ZACHARA J M, KENNEDY D W, et al. Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium[J]. Geochim Cosmochim Acta,1998, 62: 3239-3257.
[12]LEE S H, LEE I, ROH Y. Biomineralization of a poorly crystalline Fe(Ⅲ)oxide, akaganeite, by an anaerobic Fe(Ⅲ)-reducing bacterium(Shewanella alga)isolated from marine environment[J]. Geosci J, 2003, 7: 217-226.
[13]ONA-NGUEMA G, ABDELMOULA M, JORAND F, et al. Iron(II,Ⅲ)hydroxycarbonate green rust formation and stabilization from lepidocrocite bioreduction[J]. Environ Sci Technol, 2002, 36: 16-20.
[14]RODEN E E. Geochemical and microbiological controls on dissimilatory iron reduction[J]. C R Geosci, 2006,338: 456-467.
[15]SHI L, THOMAS C S, ZACHARA J M, et al. Respiration of metal(hydr)oxides by Shewanella and Geobacter: a key role for mulihaem c-type electrochemical cell[J]. Mol Microbiol, 2007, 65:12-20.
[16]GORBY Y A, YANINA S, MCLEAN J S, et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms[J]. Proc Natl Acad Sci USA, 2006, 103: 11358-11363.
[17]REGUERA G, MCCARTHY K D, MEHTA T, et al. Extracellular electron transfer via microbial nanowires[J]. Nature, 2005, 435: 1098-1101.
[18]NEVIN K P, LOVLEY D R. Mechanisms for accessing insoluble Fe(Ⅲ)oxide during dissimilatory Fe(Ⅲ)reduction by Geothrix fermentans[J]. Appl Environ Microbiol, 2002, 68: 2294-2299.
[19]TAILLEFERT M, BECKLER J S, CAREY E, et al. Shewanella putrefaciens produces an Fe(Ⅲ)-solubilizing organic ligand during anaerobic respiration on insoluble Fe(Ⅲ)oxides[J]. J Inorg Biochem, 2007, 101: 1760-1767.
[20]VON CANSTEIN H, OGAWA J, SHIMIZU S, et al. Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol[J].2008, 74: 615-623.
[21]NEWMAN D K, KOLTER R. A role for excreted quinones in extracellular electron transfer[J]. Nature, 2000, 405: 94-97.
[22]LOVLEY D R, COATES J D, BLUNT-HARRIS E L, et al. Humic substances as electron acceptors for microbial respiration[J]. Nature, 1996, 382: 445-448.
[23]KAPPLER A, BENZ M, SCHINK B, et al. Electron shuttling via humic acids in microbial iron(Ⅲ)reduction in a freshwater sediment[J]. FEMS Microbiol Ecol, 2004, 47: 85-92.
[24]TURICK C E, TISA L S, CACCAVO F. Melanin production and use as a soluble electron shuttle for Fe(Ⅲ)oxide reduction and as a terminal electron acceptor by Shewanella algae BrY[J]. Appl Environ Microbiol, 2002, 68:2436-2444.
[25]HERNANDEZ M E, KAPPLER A, NEWMAN D K. Phenazines and other redox-active antibiotics promote microbial mineral reduction[J]. Appl Environ Microbiol, 2004, 70: 921-928.
[26]Nevin K P, Lovley D R. Potential for nonenzymatic reduction of Fe(Ⅲ)via electron shuttling in subsurface sediments[J]. Environ Sci Technol,2000,34: 2472-2478.
[27]ROYER R A, BURGOS W D, FISHER A S, et al. Enhancement of biological reduction of hematite by electron shuttling and Fe(II)complexation[J]. Environ Sci Technol, 2002, 36: 1939-1946.
[28]WOLF M, KAPPLER A, JIANG J, et al. Effects of humic substances and quinones at low concentrations on ferrihydrite reduction by Geobacter metallireducens[J]. Environ Sci Technol, 2009, 43: 5679-5685.
[29]LI X M, ZHOU S G, LI F B, et al. Fe(Ⅲ)oxide reduction and carbon tetrachloride dechlorination by a newly isolated Klebsiella pneumoniae strain L17[J]. J Appl Microbiol,2009,106: 130-139.
[30]XU M Y, GUO J, SUN G P. Biodegradation of textile azo dye by Shewanella decolorationis S12 under microaerophilic conditions[J]. Appl Microbiol Biotechnol, 2007, 76: 719-726.
[31]MCCORMICK M L, ADRIAENS P. Carbon tetrachloride transformation on the surface of nanoscale biogenic magnetite particles[J]. Environ Sci Technol, 2004, 38: 1045-1053.
[32]AESCHBACHER M, SANDER M, SCHWARZENBACH R P. Novel Electrochemical approach to assess the redox properties of humic substances[J]. Environ Sci Technol, 2010, 44:87-93.
[33]BOND D R, LOVLEY D R. Reduction of Fe(Ⅲ)oxide by methanogens in the presence and absence of extracellular quinines[J]. Environ Microbiol, 2002, 4: 115-124.
[34]MARSILI E, BARON D B, SHIKHARE I D, et al. Shewanella secretes flavins that mediate extracellular electron transfer[J]. Proc Natl Acad Sci, 2008, 105: 3968-3973.
[35]DENG L F, LI F B, ZHOU S G, et al. A study of electron-shuttle mechanism in Klebsiella pneumoniae based-microbial fuel cells[J]. Chinese Sci Bull, 2010, 55: 99-104.
[36]BLODAU C, BAUER M, REGENSPURG S, et al. Electron accepting capacity of dissolved organic matter as determined by reaction with metallic zinc[J]. Chem Geol,2009,260, 186-195.
[37]HEITMANN T, BLODAU C. Oxidation and incorporation of hydrogen sulfide by dissolved organic matter[J]. Chem Geol, 2006, 235: 12-20.
[38]SCOTT D T, MCKNIGHT D M, BLUNT-HARRIS E L, et al. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms[J]. Environ Sci Technol, 1998, 32: 2984-2989.
[39]RATASUK N, NANNY M A. Characterization and quantification of reversible redox sites in humic substances[J]. Environ Technol Sci,2007,41: 7844-7850.
[40]BAUER M, HEITMANN T, MACALADY D L, et al. Electron transfer capacities and reaction kinetics of peat dissolved organic matter[J]. Environ Sci Technol, 2007, 41: 139-145.
[41]LOWN, J W. The mechanism of action of quinone antibiotics[J]. Mol Cell Biochem, 1983, 55: 17-40.
[42]傅献彩,沈文霞,姚天扬. 5版. 物理化学[M]. 北京:高等教育出版社,2006.