[1]刘亮,杨彦,李晓芳,等.铁生物还原过程电子介体电子穿梭效应与其性质关系研究[J].常州大学学报(自然科学版),2016,(06):86-94.[doi:10.3969/j.issn.2095-0411.2016.06.016]
 LIU Liang,YANG Yan,LI Xiaofang,et al.Relationship Between the Properties and the Electron Mediating Effect of Electron Shuttles for the Bioreduction of Goethite[J].Journal of Changzhou University(Natural Science Edition),2016,(06):86-94.[doi:10.3969/j.issn.2095-0411.2016.06.016]
点击复制

铁生物还原过程电子介体电子穿梭效应与其性质关系研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
期数:
2016年06期
页码:
86-94
栏目:
环境科学与工程
出版日期:
2016-11-30

文章信息/Info

Title:
Relationship Between the Properties and the Electron Mediating Effect of Electron Shuttles for the Bioreduction of Goethite
作者:
刘亮杨彦李晓芳张文艺冯俊生
常州大学 环境与安全工程学院, 江苏 常州213164
Author(s):
LIU Liang YANG Yan LI Xiaofang ZHANG Wenyi FENG Junsheng
School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China
关键词:
电子介体 铁还原菌 电子接受容量 二价铁
Keywords:
electron shuttle iron-reducing bacteria electron acceptor capacity ferrous iron
分类号:
X 14
DOI:
10.3969/j.issn.2095-0411.2016.06.016
文献标志码:
A
摘要:
铁的生物地球化学循环过程具有特殊的环境效应,铁还原菌在铁循环过程中扮演了十分重要的角色。选取9种常见的天然和合成的有机电子介体(包括低分子量的醌类、腐植酸和富里酸)研究了其对3种铁还原菌(L17、S12和HS01)还原针铁矿(α-FeOOH)的影响。结果表明,在不添加外源性电子介体的条件下,3种铁还原菌都能够还原针铁矿; 而外源性电子介体的加入能加快针铁矿的生物还原; 电子介体的电子穿梭效应与其氧化还原电位很具有一定的联系。此外,电子介体的电子穿梭效应与其电子接受容量(electron acceptor capacity, EAC)存在明显的线性关系。
Abstract:
The biogeochemistry of Fe has special environmental effects. Iron-reducing bacteria(IRB)play an important role in the Fe cycling. The effects of 9 electron shuttles(including low-molecular-weight quinones, humic acid and fulic acid )on the bioreduction of goethite(α-FeOOH)by three strains of iron-reducing bacteria(Klebsiella pneumoniae L17, Aeromonas hydrophila HS01 and Shewanella decolorationis S12)were investigated. Although all of the iron-reducing bacteria used were able to reduce goethite in the absence of exogenous electron shuttles, the addition of exogenous electron shuttles enhanced the bioreduction of goethite. In general, the rate of Fe(II)production correlated with the concentration, redox potentials and EACs(electron acceptor capacity, EAC)of the electron shuttles. Notablely, there was a significant linear relationship between the rate of Fe(II)production and the EAC of electron shuttles.

参考文献/References:

[1]唐家桓,周顺桂,袁勇,等. 天然生物地球电池效应、形成机制及生态学意义[J]. 生态学报,2015, 35(10): 3180-3189.
[2]吴云当,李芳柏,刘同旭. 土壤微生物-腐殖质-矿物间的胞外电子传递机制研究进展[J]. 土壤学报,2016,53(2): 277-291.
[3]秦薇,梁玉婷,刘勇俊,等. 石油污染土壤中降解菌的分离鉴定及降解基因筛选[J]. 常州大学学报(自然科学版),2012, 24(4): 1-7.
[4]冯胜,李定龙,高光. 淡水湖泊沉积物微生物多样性研究方法进展[J]. 常州大学学报(自然科学版),2010,22(2): 66-72.
[5]RODEN E E, WETZEL R G. Organic carbon oxidation and methane production by microbial Fe(Ⅲ)oxide reduction in vegetated and unvegetated freshwater wetland sediments[J]. Limnol Oceanogr, 1996, 41: 1733-1748.
[6]THAMDRUP B. Bacterial manganese and iron reduction in aquatic sediments[J]. Adv Microb Ecol, 2000,16: 41-84.
[7]DONG H, FREDRICKSON J K, KENNEDY D W, et al. Mineral transformation associated with the microbial reduction of magnetite[J]. Chem Geol, 2000, 169: 299-318.
[8]HANSEL C M, BENNER S G, NEISS J, et al. Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow[J]. Geochim Cosmochim Acta, 2003, 67: 2977-2992.
[9]CHACON N, SILVER W L, DUBINSKY E A, et al. Iron reduction and soil phosphorous solubilization in humid tropical forests soils: the roles of labile carbon pools and an electron shuttle compound[J]. Biogeochemistry, 2006, 78: 67-84.
[10]LOVLEY D R, ANDERSON R T. Influence of dissimilatory metal reduction on the fate of organic and metal contaminants in the subsurface[J]. Hydrogeol J, 2000, 8: 77-88.
[11]FREDRICKSON J K, ZACHARA J M, KENNEDY D W, et al. Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium[J]. Geochim Cosmochim Acta,1998, 62: 3239-3257.
[12]LEE S H, LEE I, ROH Y. Biomineralization of a poorly crystalline Fe(Ⅲ)oxide, akaganeite, by an anaerobic Fe(Ⅲ)-reducing bacterium(Shewanella alga)isolated from marine environment[J]. Geosci J, 2003, 7: 217-226.
[13]ONA-NGUEMA G, ABDELMOULA M, JORAND F, et al. Iron(II,Ⅲ)hydroxycarbonate green rust formation and stabilization from lepidocrocite bioreduction[J]. Environ Sci Technol, 2002, 36: 16-20.
[14]RODEN E E. Geochemical and microbiological controls on dissimilatory iron reduction[J]. C R Geosci, 2006,338: 456-467.
[15]SHI L, THOMAS C S, ZACHARA J M, et al. Respiration of metal(hydr)oxides by Shewanella and Geobacter: a key role for mulihaem c-type electrochemical cell[J]. Mol Microbiol, 2007, 65:12-20.
[16]GORBY Y A, YANINA S, MCLEAN J S, et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms[J]. Proc Natl Acad Sci USA, 2006, 103: 11358-11363.
[17]REGUERA G, MCCARTHY K D, MEHTA T, et al. Extracellular electron transfer via microbial nanowires[J]. Nature, 2005, 435: 1098-1101.
[18]NEVIN K P, LOVLEY D R. Mechanisms for accessing insoluble Fe(Ⅲ)oxide during dissimilatory Fe(Ⅲ)reduction by Geothrix fermentans[J]. Appl Environ Microbiol, 2002, 68: 2294-2299.
[19]TAILLEFERT M, BECKLER J S, CAREY E, et al. Shewanella putrefaciens produces an Fe(Ⅲ)-solubilizing organic ligand during anaerobic respiration on insoluble Fe(Ⅲ)oxides[J]. J Inorg Biochem, 2007, 101: 1760-1767.
[20]VON CANSTEIN H, OGAWA J, SHIMIZU S, et al. Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol[J].2008, 74: 615-623.
[21]NEWMAN D K, KOLTER R. A role for excreted quinones in extracellular electron transfer[J]. Nature, 2000, 405: 94-97.
[22]LOVLEY D R, COATES J D, BLUNT-HARRIS E L, et al. Humic substances as electron acceptors for microbial respiration[J]. Nature, 1996, 382: 445-448.
[23]KAPPLER A, BENZ M, SCHINK B, et al. Electron shuttling via humic acids in microbial iron(Ⅲ)reduction in a freshwater sediment[J]. FEMS Microbiol Ecol, 2004, 47: 85-92.
[24]TURICK C E, TISA L S, CACCAVO F. Melanin production and use as a soluble electron shuttle for Fe(Ⅲ)oxide reduction and as a terminal electron acceptor by Shewanella algae BrY[J]. Appl Environ Microbiol, 2002, 68:2436-2444.
[25]HERNANDEZ M E, KAPPLER A, NEWMAN D K. Phenazines and other redox-active antibiotics promote microbial mineral reduction[J]. Appl Environ Microbiol, 2004, 70: 921-928.
[26]Nevin K P, Lovley D R. Potential for nonenzymatic reduction of Fe(Ⅲ)via electron shuttling in subsurface sediments[J]. Environ Sci Technol,2000,34: 2472-2478.
[27]ROYER R A, BURGOS W D, FISHER A S, et al. Enhancement of biological reduction of hematite by electron shuttling and Fe(II)complexation[J]. Environ Sci Technol, 2002, 36: 1939-1946.
[28]WOLF M, KAPPLER A, JIANG J, et al. Effects of humic substances and quinones at low concentrations on ferrihydrite reduction by Geobacter metallireducens[J]. Environ Sci Technol, 2009, 43: 5679-5685.
[29]LI X M, ZHOU S G, LI F B, et al. Fe(Ⅲ)oxide reduction and carbon tetrachloride dechlorination by a newly isolated Klebsiella pneumoniae strain L17[J]. J Appl Microbiol,2009,106: 130-139.
[30]XU M Y, GUO J, SUN G P. Biodegradation of textile azo dye by Shewanella decolorationis S12 under microaerophilic conditions[J]. Appl Microbiol Biotechnol, 2007, 76: 719-726.
[31]MCCORMICK M L, ADRIAENS P. Carbon tetrachloride transformation on the surface of nanoscale biogenic magnetite particles[J]. Environ Sci Technol, 2004, 38: 1045-1053.
[32]AESCHBACHER M, SANDER M, SCHWARZENBACH R P. Novel Electrochemical approach to assess the redox properties of humic substances[J]. Environ Sci Technol, 2010, 44:87-93.
[33]BOND D R, LOVLEY D R. Reduction of Fe(Ⅲ)oxide by methanogens in the presence and absence of extracellular quinines[J]. Environ Microbiol, 2002, 4: 115-124.
[34]MARSILI E, BARON D B, SHIKHARE I D, et al. Shewanella secretes flavins that mediate extracellular electron transfer[J]. Proc Natl Acad Sci, 2008, 105: 3968-3973.
[35]DENG L F, LI F B, ZHOU S G, et al. A study of electron-shuttle mechanism in Klebsiella pneumoniae based-microbial fuel cells[J]. Chinese Sci Bull, 2010, 55: 99-104.
[36]BLODAU C, BAUER M, REGENSPURG S, et al. Electron accepting capacity of dissolved organic matter as determined by reaction with metallic zinc[J]. Chem Geol,2009,260, 186-195.
[37]HEITMANN T, BLODAU C. Oxidation and incorporation of hydrogen sulfide by dissolved organic matter[J]. Chem Geol, 2006, 235: 12-20.
[38]SCOTT D T, MCKNIGHT D M, BLUNT-HARRIS E L, et al. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms[J]. Environ Sci Technol, 1998, 32: 2984-2989.
[39]RATASUK N, NANNY M A. Characterization and quantification of reversible redox sites in humic substances[J]. Environ Technol Sci,2007,41: 7844-7850.
[40]BAUER M, HEITMANN T, MACALADY D L, et al. Electron transfer capacities and reaction kinetics of peat dissolved organic matter[J]. Environ Sci Technol, 2007, 41: 139-145.
[41]LOWN, J W. The mechanism of action of quinone antibiotics[J]. Mol Cell Biochem, 1983, 55: 17-40.
[42]傅献彩,沈文霞,姚天扬. 5版. 物理化学[M]. 北京:高等教育出版社,2006.

备注/Memo

备注/Memo:
收稿日期:2016-05-25。基金项目:国家自然科学基金青年基金(41301330); 江苏省自然科学基金(BK20130253); 江苏省产学研前瞻性联合研究项目(BY2015027-05)。作者简介:刘亮(1982—),男,湖北黄冈人,博士,讲师,主要从事环境科学与工程教学与科研工作。通讯联系人:杨彦(1984—), E-mail: yy129129@163.com
更新日期/Last Update: 2016-11-20