[1]史强,丁建宁,樊宝伟,等.射流冷却超薄玻璃的数值模拟研究[J].常州大学学报(自然科学版),2017,(01):12-21.[doi:doi:10.3969/j.issn.2095-0411.2017.01.003]
 SHI Qiang,DING Jianning,FAN Baowei,et al.Numerical Simulation of Jet Cooling Ultra-Thin Glass[J].Journal of Changzhou University(Natural Science Edition),2017,(01):12-21.[doi:doi:10.3969/j.issn.2095-0411.2017.01.003]
点击复制

射流冷却超薄玻璃的数值模拟研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
期数:
2017年01期
页码:
12-21
栏目:
材料科学与工程
出版日期:
2017-01-28

文章信息/Info

Title:
Numerical Simulation of Jet Cooling Ultra-Thin Glass
作者:
史强丁建宁樊宝伟孙涛朱科钤袁宁一
常州大学 机械工程学院,江苏 常州 213164; 江苏省光伏科学与工程协同创新中心,江苏 常州 213164; 江苏省光伏工程科学国家重点实验室培育建设点,江苏 常州 213164
Author(s):
SHI Qiang DING Jianning FAN Baowei SUN Tao ZHU Keqian YUAN Ningyi
School of Mechanical Engineering, Changzhou University, Changzhou 213164, China; Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou 213164, China; Jiangsu State Key Laboratory for Photovolatic Engineering and Science, Changzhou 213164, China
关键词:
冲击射流 物理钢化 孔口形状 小射流间距 漩涡
Keywords:
impingement physical toughened orifice shape small jet distance vortex
分类号:
TK 124
DOI:
doi:10.3969/j.issn.2095-0411.2017.01.003
文献标志码:
A
摘要:
采用计算流体力学软件FLUENT并结合热流固耦合有限元体积方法,通过求解三维N-S方程和能量方程,对雷诺数Re为30000~70000和射流间距H为1~6 mm的圆形孔口,复合型孔口和花型孔口冲击射流急冷超薄玻璃物理钢化过程进行了数值模拟,意在探究单孔射流时超薄玻璃急冷过程的流场分布和换热情况,为实现超薄玻璃表面换热更快、更均匀提供参考依据,从而研发厚度小于2 mm的超薄玻璃物理钢化技术。研究发现:圆形孔,复合型孔和花型孔冲击玻璃表面时在径向射流横截面上出现2个反向漩涡流,分析认为是射流卷吸作用加强并引起边界层发生分离现象,气流向上端扩散从而产生了漩涡流; 从被冲击玻璃表面的局部努赛尔系数分布可以看出,采用花型孔口和复合型孔口射流冲击可以使玻璃表面的冲击区域更大,冷却效果更均匀。
Abstract:
In this paper computational fluid dynamics software FLUENT and heat finite element coupling volume method were used, by calculating the three-dimensional N-S equation and energy equation, the simulation of the round orifice, complex orifice and flower type orifice impingement ultra-thin glass tempered physical processes was conducted in order to explores the flow field distribution and heat transfer distribution of single-hole quenching ultra-thin glass process, and to provide some basis of achieving faster and more uniform heat exchanging, so that the ultra-thin glass, whose thickness is less than 2mm and physical toughened technology could be developed. The study showed that there are two opposite vortex flow on the glass surface of radical cross section, when round hole, combined hole and flower type hole impact the ultra-thin glass surface. The analysis showed that entrainment effect is strengthened and cause boundary layer separation, resulting in airflow spread to the upper end of the swirl flow. It can be seen from the distribution of local Nusselt coefficient on the glass surface that using flower type hole and combined hole impinging jet can make a greater impacting area and more uniform cooling effect.

参考文献/References:

[1]陈志红, 周福来, 郭卫. 薄玻璃物理钢化[J]. 河南建材, 2005(4): 35-36.
[2]CIRILLO F, ISOPI G M. Glass tempering heat transfer coefficient evaluation and air jets parameter optimization[J]. Applied Thermal Engineering, 2009, 29(5): 1173-1179.
[3]MONNOYER F, LOCHEGNIES D. Heat transfer and flow characteristics of the cooling system of an industrial glass tempering unit[J]. Applied Thermal Engineering, 2008, 28(17): 2167-2177.
[4]陈庆光, 王涛, 吴玉林, 等. 三维湍流冲击射流流动与传热特性的数值研究[J]. 空气动力学学报, 2006, 24(2): 227-232.
[5]陈庆光, 吴玉林, 张永建, 等. 矩形管湍流冲击射流流动与传热的数值研究[J]. 热能动力工程, 2005, 20(5): 474-477.
[6]向锡炎, 周勇, 李静松. 单孔圆形喷嘴射流冷却带钢的数值模拟研究[J]. 热处理, 2010, 25(3): 44-47.
[7]张永恒, 周勇, 王良璧. 圆形冲击射流传热性能的实验研究[J]. 热科学与技术, 2006, 5(1): 38-43.
[8]WEN Z X, HE Y L, CAO X W, et al. Numerical study of impinging jets heat transfer with different nozzle geometries and arrangements for a ground fast cooling simulation device[J]. International Journal of Heat and Mass Transfer, 2016, 95: 321-335.
[9]VINZE R, CHANDEL S, LIMAYE M D, et al. Influence of jet temperature and nozzle shape on the heat transfer distribution between a smooth plate and impinging air jets[J]. International Journal of Thermal Sciences, 2016, 99: 136-151.
[10]ATTALLA M, SALEM M. Effect of nozzle geometry on heat transfer characteristics from a single circular air jet[J]. Applied Thermal Engineering, 2013, 51(1): 723-733.
[11]MIAO J M, WU C Y, CHEN P H. Numerical investigation of confined multiple-jet impingement cooling over a flat plate at different crossflow orientaions[J]. Numerical Heat Transfer, Part A: Applications, 2009, 55(11): 1019-1050.

备注/Memo

备注/Memo:
收稿日期:2016-03-25。
基金项目:国家自然科学基金资助项目(51335002,51272033); 江苏高校优势学科建设工程资助项目(苏学科办[2014]9)。
作者简介:史强(1993—),男,江苏宿迁人,硕士生。通讯联系人:丁建宁(1966-),E-mail:dingjn@cczu.edu.cn
更新日期/Last Update: 2017-02-10