参考文献/References:
[1]LIAO Y C, KAO Z K. Direct writing patterns for electroless plated copper thin film on plastic substrates[J]. ACS Appl. Mater Interfaces, 2012(4): 5109-5113.
[2]ZABETAKIS D, LOSCHIALPO P, SMITH D, et al. Direct-writing patterning palladium colloids as a catalyst for electroless metallization for microwave composites[J]. Langmuir, 2009, 25: 1785-1789.
[3]RIDA A, LI Y, VYAS R. Conductive ink-printed antennas on flexible low-cost paper-based substrates for RFID and WSN applications[J]. IEEE Antenn Propag M, 2009, 51: 13-23.
[4]KO S H, PAN H, GRIGOROPOULOS C P, et al. All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles[J]. Nanotechnology, 2007, 18: 1-8.
[5]ZHANG T Y, WANG X L, LI T J, et al. Fabrication of flexible copper-based electronics with high-resolution and high-conductivity on paper via inkjet printing[J]. J Mater Chem C, 2014(2): 286-294.
[6]KREBS F C, FYENBO J, JORGENSEN M. Product integration of compact roll-to-roll processed polymer solar cell modules: methods and manufacture using flexographic printing, slot-die coating and rotary screen printing[J]. J Mater Chem A, 2010, 20: 8994-9001.
[7]RICHTER G, HILLERICH K, GIANOLA D S. Ultrahigh strength single crystalline nanowhiskers grown by physical vapor deposition[J]. Nano Lett, 2009(9): 3048-3052.
[8]MEERAKKER J V D. On the mechanism of electroless plating one mechanism for different reductants[J]. J Appl Electrochem,1981, 11: 395-400.
[9]MAGDASSI S, GROUCHKO M, KAMYSHNY A. Copper nanoparticles for printed electronics: routes towards achieving oxidation stability[J]. Materials, 2010(3): 4626-4638.
[10]CALVERT P. Inkjet printing for materials and devices[J]. Chem Mater, 2001, 13: 3299-3305.
[11]BAUDRAND D, BENGSTON J, INC M D, et al. Electroless plating processes: developing technologies for electroless nickel, palladium and gold[J]. Met Finish, 1995, 93: 55-57.
[12]DIAMAND Y S, DUBIN V, M. Angyal Electroless copper deposition for ULSI[J]. Thin Solid Films,1995,262: 93-103.
[13]HOTH C N, CHOULIS S A, SCHILINSKY P, et al. High photovoltaic performance of inkjet printed polymer: fullerene blends[J]. Advanced Materials, 2007,19(22): 3973-3978.
[14]POLAVARAPU L, LIZ-MARZáN L M. Towards low-cost flexible substrates for nanoplasmonic sensing[J]. Physical Chemistry Chemical Physics, 2013, 15(15): 5288-5300.
[15]WEI W Y, WHITE I M. Chromatographic separation and detection of target analytes from complex samples using inkjet printed SERS substrates[J]. Analyst, 2013, 138(13): 3679-3686.
[16]NERY E W, KUBOTA L T. Sensing approaches on paper-based devices: a review[J]. Analytical and Bioanalytical Chemistry, 2013, 405(24): 7573-7595.
[17]MA S, LIU L, BROMBERG V, et al. Electroless copper plating of inkjet-printed polydopamine nanoparticles: a facile method to fabricate highly conductive patterns at near room Temperature[J]. ACS Applied Materials & Interfaces, 2014, 6(22): 19494-19498.
[18]李景涛. 喷墨纳米银导电墨水的制备及性能研究[D].广州:华南理工大学,2012.
[19]LI D, SUTTON D, BURGESS A, et al. Conductive copper and nickel lines via reactive inkjet printing[J]. Journal of Materials Chemistry, 2009, 19(22): 3719-3724.
[20]PERELAER J, DE LAAT A W M, HENDRIKS C E, et al. Inkjet-printed silver tracks: low temperature curing and thermal stability investigation[J]. Journal of Materials Chemistry, 2008, 18(27): 3209-3215.
[21]李健. 纳米铜导电油墨工艺及应用研究[D]. 武汉:华中科技大学,2012.
[22]魏国强,徐高,胡文祥. 金催化化学概况及新进展[J]. 化学通报, 2011(2): 99-105.
[23]PETUKHOV D I, KIRIKOVA M N, BESSONOV A A, et al. Nickel and copper conductive patterns fabricated by reactive inkjet printing combined with electroless plating[J]. Materials Letters, 2014, 132: 302-306.