[1]魏永,赵威,董良飞,等.光催化耦合膜分离去除腐殖酸效果研究[J].常州大学学报(自然科学版),2017,(03):43-50.[doi:10.3969/j.issn.2095-0411.2017.03.007]
 WEI Yong,ZHAO Wei,DONG Liangfei,et al.Study on Removal Effect of Humic Acid by Photocatalytic Coupling Membrane Separation[J].Journal of Changzhou University(Natural Science Edition),2017,(03):43-50.[doi:10.3969/j.issn.2095-0411.2017.03.007]
点击复制

光催化耦合膜分离去除腐殖酸效果研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
期数:
2017年03期
页码:
43-50
栏目:
环境科学与工程
出版日期:
2017-05-28

文章信息/Info

Title:
Study on Removal Effect of Humic Acid by Photocatalytic Coupling Membrane Separation
作者:
魏永1赵威1董良飞1董秉直2
1. 常州大学 环境与安全工程学院,江苏 常州 213164; 2. 同济大学 环境科学与工程学院,上海 200092
Author(s):
WEI Yong1 ZHAO Wei1DONG Liangfei1 DONG Bingzhi2
1. School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China; 2. College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
关键词:
光催化氧化 膜分离 水处理 腐殖酸
Keywords:
photocatalytic oxidation membrane separation water treatment humic acid
分类号:
TU 991.2
DOI:
10.3969/j.issn.2095-0411.2017.03.007
文献标志码:
A
摘要:
采用光催化耦合膜分离一体化实验装置,分别考察了紫外辐照强度,悬浮二氧化钛浓度,腐殖酸初始溶解性有机碳DOC(Dissolved organic carbon)浓度,pH,添加H2O2对去除腐殖酸HA(Humic acid)效果的研究。结果表明,一定范围内提高紫外灯的辐照强度或TiO2质量浓度,均可加快光催化反应速率; 不同初始质量浓度的腐殖酸,其光催化降解速率没有明显的差别,由于吸附的原因,较低的DOC具有较高的去除率; 不同pH显著影响HA降解效果,低pH有利于提高光催化降解速率及去除效率; 适量添加过氧化氢可以提高HA去除率及其降解速率。
Abstract:
The effect of the removal of DOC in humic acid HA(Humic acid)has been investigated coupling photocatalytic and membrane separation experiment with UV irradiation intensity, initial concentration of titanium dioxide suspension, dissolved organic carbon DOC(Dissolved organic carbon)concentration of humic acid, pH value, addition of H2O2. It could improve the rate of catalytic oxidation with increasing radiation intensity of ultraviolet lamp or the concentration of TiO2 at certain range. The lower DOC of initial concentration of humic acid has a higher removal rate because of adsorption, but the photocatalytic degradation rate has not been significantly improved. The pH value significantly influenced the effect of the degradation of HA, the lower pH value has improved the photocatalytic degradation rate and the overall removal efficiency. It also could improve the removal rate and the rate of degradation of HA by adding appropriate amount of H2O2.

参考文献/References:

[1]DU X, QU F S, LIANG H, et al. Cake properties in ultrafiltration of TiO2 fine particles combined with HA: in situ measurement of cake thickness by fluid dynamic gauging and CFD calculation of imposed shear stress for cake controlling[J].Environ Sci Pollut R, 2016, 23(9): 8806-8818.
[2]KANAGARAJ P, NEELAKANDAN S, NAGENDRAN A, et al. Removal of BSA and HA contaminants from aqueous solution using amphiphilic triblock copolymer modified poly(ether imide)UF membrane and their fouling behaviors[J].Ind Eng Chem Res, 2015, 54(46): 11628-11634.
[3]VICKERS J C, THOMPSON M A, KELKAR U G. The use of membrane filtration in conjunction with coagulation processes for improved nom removal[J].Desalination, 1995, 102(1/2/3): 57-61.
[4]BAI L M, LIANG H, CRITTENDEN J, et al. Surface modification of UF membranes with functionalized MWCNTs to control membrane fouling by NOM fractions[J].J Membrane Sci, 2015, 492: 400-411.
[5]FUJISHIMA A, HONDA K. Photolysis-decomposition of water at surface of an irradiated semiconduction[J].Nature, 1972, 37(1): 238-245.
[6]HU Q Q, HUANG J Q, LI G J, et al. Origin of the improved photocatalytic activity of Cu incorporated TiO2 for hydrogen generation from water[J].Appl Surf Sci, 2016, 382: 170-177.
[7]PHONG D D, HUR J. Insight into photocatalytic degradation of dissolved organic matter in UVA/TiO2 systems revealed by fluorescence EEM-PARAFAC[J].Water Res, 2015, 87: 119-126.
[8]ONG S W D, LIN J Y, SEEBAUER E G. Control of photoactivity over polycrystalline anatase TiO2 thin films via surface potential[J].J Phys Chem C, 2015, 119(48): 27060-27071.
[9]SOPYAN I, WATANABE M, MURASAWA S, et al. A film-type photocatalyst incorporating highly active TiO2 powder and fluororesin binder: Photocatalytic activity and long-term stability[J].J Electroanal Chem, 1996, 415(1/2): 183-186.
[10]HUANG X, MENG Y, LIANG P, et al. Operational conditions of a membrane filtration reactor coupled with photocatalytic oxidation[J].Sep Purif Technol, 2007, 55(2): 165-172.
[11]CHOO K H, CHANG D I, PARK K W, et al. Use of an integrated photocatalysis/hollow fiber microfiltration system for the removal of trichloroethylene in water[J].J Hazard Mater, 2008, 152(1): 183-190.
[12]HUANG H, SCHWAB K, JACANGELO J G. Pretreatment for low pressure membranes in water treatment: A review[J].Environ Sci Technol, 2009, 43(9): 3011-3019.
[13]FU J F, JI M, WANG Z, et al. A new submerged membrane photocatalysis reactor(SMPR)for fulvic acid removal using a nano-structured photocatalyst[J].J Hazard Mater, 2006, 131(1/2/3): 238-242.
[14]HUANG X H, LEAL M, LI Q L. Degradation of natural organic matter by TiO2 photocatalytic oxidation and its effect on fouling of low-pressure membranes[J].Water Res, 2008, 42(4/5): 1142-1150
[15]VALENTE J P S, PADILHA P M, FLORENTINO A O. Studies on the adsorption and kinetics of photodegradation of a model compound for heterogeneous photocatalysis onto TiO2[J].Chemosphere, 2006, 64(7): 1128-1133.
[16]KHUZWAYO Z, CHIRWA E M N. Modelling and simulation of photocatalytic oxidation mechanism of chlorohalogenated substituted phenols in batch systems: Langmuir-Hinshelwood approach[J].J Hazard Mater, 2015, 300: 459-466.
[17]CHIN S S, LIM T M, CHIANG K, et al. Factors affecting the performance of a low-pressure submerged membrane photocatalytic reactor[J].Chem Eng J, 2007, 130(1): 53-63.
[18]PARRA S, STANCA S E, GUASAQUILLO I, et al. Photocatalytic degradation of atrazine using suspended and supported TiO2[J].Appl Catal B-Environ, 2004, 51(2): 107-116.
[19]BEKBOLET M, SUPHANDAG A S, UYGUNER C S. An investigation of the photocatalytic efficiencies of TiO2 powders on the decolourisation of humic acids[J].J Photoch Photobio A, 2002, 148(1/2/3): 121-128.
[20]KIM M S, CHUNG J G. A study on the adsorption characteristics of orthophosphates on rutile-type titanium dioxide in aqueous solutions[J].J Colloid Interf Sci, 2001, 233(1): 31-37
[21]BEKBOLET M, BALCIOGLU I. Photocatalytic degradation kinetics of humic acid in aqueous TiO2 dispersions: The influence of hydrogen peroxide and bicarbonate ion[J].Water Sci Technol, 1996, 34(9): 73-80.

备注/Memo

备注/Memo:
收稿日期:2016-10-03。
基金项目:江苏省“双创计划”资助项目(苏人才办〔2014〕27 号); 江苏省产学研前瞻项目(BY2014037-18); 2016年常州大学科技创新基金(201610292032Y)。
作者简介:魏永(1975—),男,江苏丰县人,博士,副教授,主要从事水处理研究。
更新日期/Last Update: 2017-06-05