[1]刘晓骞,王晶晶,王杰,等.基于取代苯胺的不对称方酸菁的合成以及光学性质研究[J].常州大学学报(自然科学版),2017,(04):26-31,38.[doi:10.3969/j.issn.2095-0411.2017.04.005]
 LIU Xiaoqian,WANG Jingjing,WANG Jie,et al.Synthesis Andoptical Property Study of Asymmetrical Aniline Substituted Squaraines[J].Journal of Changzhou University(Natural Science Edition),2017,(04):26-31,38.[doi:10.3969/j.issn.2095-0411.2017.04.005]
点击复制

基于取代苯胺的不对称方酸菁的合成以及光学性质研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
期数:
2017年04期
页码:
26-31,38
栏目:
生物医学工程
出版日期:
2017-07-30

文章信息/Info

Title:
Synthesis Andoptical Property Study of Asymmetrical Aniline Substituted Squaraines
作者:
刘晓骞王晶晶王杰周晓鹰
常州大学 制药与生命科学学院,江苏 常州 213164
Author(s):
LIU Xiaoqian WANG Jingjing WANG Jie ZHOU Xiaoying
School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, China
关键词:
方酸菁衍生物 吸收以及荧光性质 循环伏安法测定
Keywords:
squaraine derivatives absorption and fluorescent properties cyclic voltammetric measurement
分类号:
R 91
DOI:
10.3969/j.issn.2095-0411.2017.04.005
文献标志码:
A
摘要:
不对称方酸菁染料在新能源材料和生物标记方面有广泛的应用。合成了3类不同的方酸菁衍生物,化合物结构通过1H NMR,13C NMR和MS进行了表征。同时对于它们的近红外吸收以及荧光强度等物理性质也做了研究。结果显示,这3种不同的方酸菁衍生物具有良好的吸收以及荧光特性。循环伏安法的测定,进一步解释了3种化合物近红外吸收和荧光发射波长的差异。这3种化合物可作为合适的候选化合物,用于生物成像的应用。
Abstract:
Asymmetrical squaraine derivatives have wide applications in new energy materials, bio-labelling, etc. In this paper, three different squaraine derivatives have been synthesized and characterized by 1H NMR,13C NMR and Mass.Their physical properties especially for absorption and fluorescent properties were investigated as well. The results showed that these three different squaraines gave us very good parameters in both absorption and fluorescent study which can be further elaborated using cyclic voltammetric measurement as solid support. These three compounds can be considered suitable candidates for bio-imaging application.

参考文献/References:

[1]AJAYAGHOSHAH A. Chemistry of squaraine-derived materials: Near-IR dyes, low band gap systems, and cation sensors[J]. Acc Chem Res, 2005, 38(6): 449-459.
[2]SHI W, MA H. Spectroscopic probes with changeable π-conjugated systems[J]. Chem Comm, 2012, 48: 8732-9744.
[3]MCEWEN J J, WALLACE K J. Squaraine dyes in molecular recognition and self-assembly[J]. Chem Comm, 2009, 45: 6339-6351.
[4]LAM S L, LIU X, ZHAO F, et al. Manipulating open-circuit voltage in an organic photovoltaic device via a phenylalkyl side chain[J]. Chem Comm, 2013, 49: 4543-4545.
[5]SILVERTRI F, IRWIN M D, BEVERINA L, et al. Efficient squaraine-based solution processable bulk-heterojunction solar cells[J]. J Am Chem Soc, 2008, 130(52): 17640-17641.
[6]YUM J H, WALTRE P, HUBER S, et al. Efficient far red sensitization of nanocrystalline TiO2 films by an unsymmetrical squaraine Dye[J]. J Am Chem Soc, 2007, 129(34): 10320-10321.
[7]LI J Y, CHEN C Y, LEE C P, et al. Unsymmetrical squaraines incorporating the thiophene unit for panchromatic dye-sensitized solar cells[J]. Org Lett, 2010, 12(23): 5454-5457.
[8]DEMETER D, ROUSSEAU T, LERICHE P, et al. Manipulation of the open-circuit voltage of organic solar cells by desymmetrization of the structure of acceptor-donor-acceptor molecules[J]. Adv Funct Mater, 2011, 21(22): 4379-4387.
[9]BEVERINA L, RUFFO R, SALAMONE M M, et al. Panchromatic squaraine compounds for broad band light harvesting electronic devices[J]. J Mater Chem, 2012, 22: 6704-6710.
[10]LEE J J, WHITE A G, BAUMES J M, et al. Microwave-assisted slipping synthesis of fluorescent squaraine rotaxane probe for bacterial imaging[J]. Chem Commun, 2010, 46: 1068-1069.
[11]GONCALVES M S. Fluorescent labeling of biomolecules with organic probes[J]. Chem Rev, 2009, 109(1): 190-212.
[12]AVIRAHR R, JAYARAM D T, ADARSH N, et al. Squaraine dyes in PDT: from basic design to in vivo demonstration[J]. Org Biomol Chem, 2012, 10, 911-920.
[13]HUANG Y Y, MROZ P, ZHIYENTAYEV T, et al. In vitro Photodynamic therapy and quantitative structure-activity relationship studies with stable synthetic near-infrared-absorbing bacteriochlorin photosensitizers[J]. J Med Chem, 2010, 53(10): 4018-4027.
[14]LIM S H, THIVIERGET C, SLIWINSKA P N, et al. In vitro and in vivo photocytotoxicity of boron dipyrromethene derivatives for photodynamic therapy[J]. J Med Chem, 2010, 53(7): 2865-2874.
[15]RAPOZZI V, BEVERINA L, SALICE P, et al. Photooxidation and phototoxicity of π-extended squaraines[J]. J Med Chem, 2010, 53(5): 2188-2196.
[16]OBATA M, HIROHARA S, TANAKA R, et al. In vitro heavy-atom effect of palladium(II)and platinum(II)complexes of pyrrolidine-fused chlorin in photodynamic therapy[J]. J Med Chem, 2009, 52(9): 2747-2753.
[17]LU T, SHAO P, MATHEW I, et al. Two-photon photosensitized production of singlet oxygen in water[J]. J Am Chem Soc, 2005, 127(1): 255-269.
[18]GORMAN A, KILLORAN J, O’SHEA C, et al. In vitro demonstration of the heavy-atom effect for photodynamic therapy[J]. J Am Chem Soc, 2004,126(34): 10619-10631.
[19]DETTY M R, GIBSON S L, WAGNER S J. Current clinical and preclinical photosensitizers for use in photodynamic therapy[J]. J Med Chem, 2004, 47(16): 3897-3915.
[20]CHOIH S, NSAR K, ALYABYEVS, et al. Synthesis and in vivo fate of zwitterionic near-infrared fluorophores[J]. Angew Chem Int Ed, 2011, 50(28): 6258-6263.
[21]AJAYAGHOSH A. Donor-acceptor type low band gap polymers: polysquaraines and related systems[J]. Chem Soc Rev, 2003, 32, 181-191.
[22]MAYERHOFFER U, GASANGER M, STOLTE M, et al. Synthesis and molecular properties of acceptor-substituted squaraine dyes[J]. Chem Eur J, 2013, 19(1): 218-232.
[23]MAYERHOFFER U, FIMMEL B, WURTHNER F. Bright near-infrared fluorophores based on squaraines by unexpected halogen effects[J]. Angew Chem Int Ed, 2012, 51(1): 164-167.
[24]SREEJITH S, CAROL P, AJAYAGHOSH A. Squaraine dyes: a mine of molecular materials[J]. J Mater Chem, 2008, 18: 264-267.
[25]KEIL D, HATMANN H. Synthesis and characterization of a new class of unsymmetrical squaraine dyes[J]. Dyes Pigm, 2001, 49(3): 161-179.
[26]CHEN J, WINTERR F, Studies on a vinyl ruthenium-modified squaraine dye: multiple visible/near-infrared absorbance switching through dyeand substituent-based redox processes[J]. Chem Eur J, 2012, 18(34): 10733-10741.
[27]LYNTH D E, KIKHAM A N, CHOWDHURY M, et al. Water soluble squaraine dyes for use as colorimetric stains in gel electrophoresis[J]. Dyes and Pigm, 2012, 94(3): 393-402.
[28]SHI Y, HILL R B, YUM J H, et al. A high-efficiency panchromatic squaraine sensitizer for dye-sensitized solar cells[J]. Angew Chem Int Ed, 2011, 50(29): 6619-6621.
[29]BEVERINA L, SALICE P. Squaraine compounds: tailored design and synthesis towards a variety of material science applications[J]. Eur J Org Chem, 2010(7): 1207-1225.
[30]KIMS, MOR G K, PAULOSE M, et al. Molecular design of near-IR harvesting unsymmetrical squaraine dyes[J]. Langmuir, 2010, 26(16): 13486-13492.
[31]WANG Z S, LI F Y, HUANG C H. Photocurrent enhancement of hemicyanine dyes containing RSO3-group through treating TiO2 films with hydrochloric acid[J]. J Phys Chem B, 2001, 1059(38): 9210-9217.
[32]LAW K Y. Organic photoconductive materials: recent trends and developments[J]. Chem Rev, 1993, 93(1): 449-486.
[33]LIU L H, NAKATANI K, PANSU R, et al. Fluorescence patterning through photoinduced migration of squaraine-functionalized azo derivatives[J]. Adv Mater, 2007, 19: 433-436.
[34]RAMALINGAM V, DOMARADZKI M E, JANG S, et al. Carbonyl groups as molecular valves to regulate chloride binding to squaramides[J]. Org Lett, 2008, 10(15): 3315-3318.

备注/Memo

备注/Memo:
收稿日期:2016-10-24。基金项目:江苏省师资队伍建设基金资助项目(SCZ 1422100002, SCZ 1505200002); 常州大学科研启动基金资助项目(ZMF 14020071)。作者简介:刘晓骞(1984—),男,江苏常州人,博士,江苏省特聘教授。通讯联系人:周晓鹰(1960—),E-mail: xiaoyingzhou@cczu.edu.cn
更新日期/Last Update: 2017-07-20