参考文献/References:
[1]AJAYAGHOSHAH A. Chemistry of squaraine-derived materials: Near-IR dyes, low band gap systems, and cation sensors[J]. Acc Chem Res, 2005, 38(6): 449-459.
[2]SHI W, MA H. Spectroscopic probes with changeable π-conjugated systems[J]. Chem Comm, 2012, 48: 8732-9744.
[3]MCEWEN J J, WALLACE K J. Squaraine dyes in molecular recognition and self-assembly[J]. Chem Comm, 2009, 45: 6339-6351.
[4]LAM S L, LIU X, ZHAO F, et al. Manipulating open-circuit voltage in an organic photovoltaic device via a phenylalkyl side chain[J]. Chem Comm, 2013, 49: 4543-4545.
[5]SILVERTRI F, IRWIN M D, BEVERINA L, et al. Efficient squaraine-based solution processable bulk-heterojunction solar cells[J]. J Am Chem Soc, 2008, 130(52): 17640-17641.
[6]YUM J H, WALTRE P, HUBER S, et al. Efficient far red sensitization of nanocrystalline TiO2 films by an unsymmetrical squaraine Dye[J]. J Am Chem Soc, 2007, 129(34): 10320-10321.
[7]LI J Y, CHEN C Y, LEE C P, et al. Unsymmetrical squaraines incorporating the thiophene unit for panchromatic dye-sensitized solar cells[J]. Org Lett, 2010, 12(23): 5454-5457.
[8]DEMETER D, ROUSSEAU T, LERICHE P, et al. Manipulation of the open-circuit voltage of organic solar cells by desymmetrization of the structure of acceptor-donor-acceptor molecules[J]. Adv Funct Mater, 2011, 21(22): 4379-4387.
[9]BEVERINA L, RUFFO R, SALAMONE M M, et al. Panchromatic squaraine compounds for broad band light harvesting electronic devices[J]. J Mater Chem, 2012, 22: 6704-6710.
[10]LEE J J, WHITE A G, BAUMES J M, et al. Microwave-assisted slipping synthesis of fluorescent squaraine rotaxane probe for bacterial imaging[J]. Chem Commun, 2010, 46: 1068-1069.
[11]GONCALVES M S. Fluorescent labeling of biomolecules with organic probes[J]. Chem Rev, 2009, 109(1): 190-212.
[12]AVIRAHR R, JAYARAM D T, ADARSH N, et al. Squaraine dyes in PDT: from basic design to in vivo demonstration[J]. Org Biomol Chem, 2012, 10, 911-920.
[13]HUANG Y Y, MROZ P, ZHIYENTAYEV T, et al. In vitro Photodynamic therapy and quantitative structure-activity relationship studies with stable synthetic near-infrared-absorbing bacteriochlorin photosensitizers[J]. J Med Chem, 2010, 53(10): 4018-4027.
[14]LIM S H, THIVIERGET C, SLIWINSKA P N, et al. In vitro and in vivo photocytotoxicity of boron dipyrromethene derivatives for photodynamic therapy[J]. J Med Chem, 2010, 53(7): 2865-2874.
[15]RAPOZZI V, BEVERINA L, SALICE P, et al. Photooxidation and phototoxicity of π-extended squaraines[J]. J Med Chem, 2010, 53(5): 2188-2196.
[16]OBATA M, HIROHARA S, TANAKA R, et al. In vitro heavy-atom effect of palladium(II)and platinum(II)complexes of pyrrolidine-fused chlorin in photodynamic therapy[J]. J Med Chem, 2009, 52(9): 2747-2753.
[17]LU T, SHAO P, MATHEW I, et al. Two-photon photosensitized production of singlet oxygen in water[J]. J Am Chem Soc, 2005, 127(1): 255-269.
[18]GORMAN A, KILLORAN J, O’SHEA C, et al. In vitro demonstration of the heavy-atom effect for photodynamic therapy[J]. J Am Chem Soc, 2004,126(34): 10619-10631.
[19]DETTY M R, GIBSON S L, WAGNER S J. Current clinical and preclinical photosensitizers for use in photodynamic therapy[J]. J Med Chem, 2004, 47(16): 3897-3915.
[20]CHOIH S, NSAR K, ALYABYEVS, et al. Synthesis and in vivo fate of zwitterionic near-infrared fluorophores[J]. Angew Chem Int Ed, 2011, 50(28): 6258-6263.
[21]AJAYAGHOSH A. Donor-acceptor type low band gap polymers: polysquaraines and related systems[J]. Chem Soc Rev, 2003, 32, 181-191.
[22]MAYERHOFFER U, GASANGER M, STOLTE M, et al. Synthesis and molecular properties of acceptor-substituted squaraine dyes[J]. Chem Eur J, 2013, 19(1): 218-232.
[23]MAYERHOFFER U, FIMMEL B, WURTHNER F. Bright near-infrared fluorophores based on squaraines by unexpected halogen effects[J]. Angew Chem Int Ed, 2012, 51(1): 164-167.
[24]SREEJITH S, CAROL P, AJAYAGHOSH A. Squaraine dyes: a mine of molecular materials[J]. J Mater Chem, 2008, 18: 264-267.
[25]KEIL D, HATMANN H. Synthesis and characterization of a new class of unsymmetrical squaraine dyes[J]. Dyes Pigm, 2001, 49(3): 161-179.
[26]CHEN J, WINTERR F, Studies on a vinyl ruthenium-modified squaraine dye: multiple visible/near-infrared absorbance switching through dyeand substituent-based redox processes[J]. Chem Eur J, 2012, 18(34): 10733-10741.
[27]LYNTH D E, KIKHAM A N, CHOWDHURY M, et al. Water soluble squaraine dyes for use as colorimetric stains in gel electrophoresis[J]. Dyes and Pigm, 2012, 94(3): 393-402.
[28]SHI Y, HILL R B, YUM J H, et al. A high-efficiency panchromatic squaraine sensitizer for dye-sensitized solar cells[J]. Angew Chem Int Ed, 2011, 50(29): 6619-6621.
[29]BEVERINA L, SALICE P. Squaraine compounds: tailored design and synthesis towards a variety of material science applications[J]. Eur J Org Chem, 2010(7): 1207-1225.
[30]KIMS, MOR G K, PAULOSE M, et al. Molecular design of near-IR harvesting unsymmetrical squaraine dyes[J]. Langmuir, 2010, 26(16): 13486-13492.
[31]WANG Z S, LI F Y, HUANG C H. Photocurrent enhancement of hemicyanine dyes containing RSO3-group through treating TiO2 films with hydrochloric acid[J]. J Phys Chem B, 2001, 1059(38): 9210-9217.
[32]LAW K Y. Organic photoconductive materials: recent trends and developments[J]. Chem Rev, 1993, 93(1): 449-486.
[33]LIU L H, NAKATANI K, PANSU R, et al. Fluorescence patterning through photoinduced migration of squaraine-functionalized azo derivatives[J]. Adv Mater, 2007, 19: 433-436.
[34]RAMALINGAM V, DOMARADZKI M E, JANG S, et al. Carbonyl groups as molecular valves to regulate chloride binding to squaramides[J]. Org Lett, 2008, 10(15): 3315-3318.