[1]赵兴青,成艳,孙秀云,等.碳酸盐矿化菌固结重金属离子Cu2+的研究[J].常州大学学报(自然科学版),2018,30(01):15-21.[doi:10.3969/j.issn.2095-0411.2018.01.003]
 ZHAO Xingqing,CHENG Yan,SUN Xiuyun,et al.Study on Heavy Metal Ion Cu2+ Mineralized by Carbonate Mineralization Bacteria[J].Journal of Changzhou University(Natural Science Edition),2018,30(01):15-21.[doi:10.3969/j.issn.2095-0411.2018.01.003]
点击复制

碳酸盐矿化菌固结重金属离子Cu2+的研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第30卷
期数:
2018年01期
页码:
15-21
栏目:
环境科学与工程
出版日期:
2018-01-28

文章信息/Info

Title:
Study on Heavy Metal Ion Cu2+ Mineralized by Carbonate Mineralization Bacteria
作者:
赵兴青成艳孙秀云王莲莲
常州大学 环境与安全工程学院,江苏 常州 213164
Author(s):
ZHAO Xingqing CHENG Yan SUN Xiuyun WANG Lianlian
School of Environmental & Safety Engineering, Changzhou University, Changzhou 213164, China
关键词:
碳酸盐矿化菌 酶化作用 微生物修复 固结率
Keywords:
carbonate mineralization microbe enzymatic process microbial remediation consolidation rate
分类号:
X 15
DOI:
10.3969/j.issn.2095-0411.2018.01.003
文献标志码:
A
摘要:
选取一株从南京栖霞山矿山周边土壤中筛选出来的耐Cu菌株Cu11,对其进行了酶化实验和菌种鉴定,并利用其生长代谢过程中产生的酶化作用来分解底物尿素,产生CO2-3,与溶液中的Cu2+ 结合产生沉淀,利用EDS、XRD、SEM等分析手段对其进行了分析。结果表明:菌株Cu11是碳酸盐矿化菌,并鉴定其为Cupriavidus necator; 矿化产物主要为碳酸盐CuCO3和Cu2(OH)2CO3。对影响Cu2+ 固结率的不同因素的分析表明,随着pH的升高,Cu2+ 固结率也随之上升,当pH为13时,Cu2+ 固结率可达到97%; 接种量对Cu2+固结率的影响差异很小,维持在85%~90%; 当Cu2+ 浓度较低(0.005 mol/L和0.01 mol/L)时,Cu2+ 固结率可达到97.7%,而当Cu2+ 浓度较高(0.03~0.09 mol/L)时,Cu2+ 固结率稳定在80%左右; 随着底物浓度的增加,Cu2+ 固结率先上升后下降,在25 g/L时可达到最高值96%。
Abstract:
A Cu-tolerant strain, isolated from the soil of Mountain Qixia in Nanjing, was selected and used for enzyme digestion and identification. The was decomposited urea by enzymatic process during its growth and metabolism to produce CO2-3, and combined with Cu2+ in solution to turned to precipitation, which were analyzed using EDS, XRD, SEM and other analytical methods. The results showed that the strain Cu11 is a carbonate mineralization microbe and identified as Cupriavidus necator, the main products are CuCO3 and Cu2(OH)2CO3. The analysis of different influence on the rate of consolidation of Cu2+ showed that the Cu2+ consolidation rate increased with the increase of pH, and it reached 97% when pH was 13, the difference of inoculation amount of Cu2+ on Cu2+ consolidation rate was small, which was maintained at 85%-90%, the Cu2+ consolidation rate could reach 97.7% when the Cu2+ concentration being lower(0.005, 0.01 mol/L), while the Cu2+ concentration was high(0.03-0.09 mol/L), the Cu2+ concentration rate was only stable at about 80%, With the increase of substrate concentration, the Cu2+ consolidation rate increased first and then decreased, reaching a maximum of 96% at 25 g/L.

参考文献/References:

[1]TESSIER A,CAMPBELL P G C,BISSON M.Sequential extraction procedure for the speciation of particulate trace metals[J].Analytical Chemistry,1979,51(7):844-851.
[2]刘玉荣,党志,尚爱安.污染土壤中重金属生物有效性的植物指示法研究[J].环境污染与防治,2003,25(4):215-217.
[3]潘新星,高琪,杨柳,等.常州市城乡道路两侧住宅灰尘重金属的健康风险[J].常州大学学报(自然科学版),2015,27(4):79-84.
[4]MORGAN J A W,BENDING G D,WHITE P J.Biological costs and benefits to plant-microbe interactions in the rhizosphere[J].Journal of Experimental Botany,2005,56(417):1729-1739.
[5]赵庆龄,张乃弟,路文如.土壤重金属污染研究回顾与展望Ⅱ:基于三大学科的研究热点与前沿分析[J].环境科学与技术,2010,33(7):102-106.
[6]王敏,徐甜甜,李强,等.重金属污染土壤的微生物修复机理与技术[J].唐山学院学报,2011,24(3):43-45.
[7]滕应,黄昌勇.重金属污染土壤的微生物生态效应及其修复研究进展[J].土壤与环境,2002,11(1):85-89.
[8]BARTAN L L,DAVID A S.Transport and remediation of subsurface contaminants[M].Washington D C:American Chemical Society,1992.
[9]CHEN Z,PAN X H,CHEN H.Biomineralization of Pb(Ⅱ)into Pb-hydroxyapatite induced by Bacillus cereus 12-2 isolated from lead-zinc mine tailings[J].Journal of Hazardous Materials,2016,301(15):531-537.
[10]LI M,CHENG X H,GUO H X.Heavy metal removal by biomineralization of urease producing bacteria isolated from soil[J].International Biodeterioration & Biodegradation,2013,76:81-85.
[11]FUJITA Y,REDDEN G D,INGRAM J C,et al.Strontium incorporation into calcite generated by bacterial ureolysis[J].Geochimica et Cosmochimica Acta,2004,68(15):3261-3270.
[12]成亮,钱春香,王瑞兴,等.碳酸盐矿化菌株A固结土壤Cd2+的生物矿化过程[J].硅酸盐学报,2008,36(S1):215-221.
[13]谢家仪,董光军,刘振英.扫描电镜的微生物样品制备方法[J].电子显微学报,2005,24(4):440.
[14]周胜波,李庚飞,侯新凯.矿渣水泥浆体中结晶矿物的XRD分析[J].中国矿业,2008,17(12):88-93.
[15]GOVARTHANAN M,LEE K J,CHO M,et al.Significance of autochthonous Bacillus sp KK1 on biomineralization of lead in mine tailings[J].Chemosphere,2013,90(8):2267-2272.
[16]沈萍,范秀容,李广武.微生物学实验[M].北京:高等教育出版社,2002.
[17]ACHAL V,PAN X L,ZHANG D Y.Bioremediation of strontium(Sr)contaminated aquifer quartz sand based on carbonate precipitation induced by Sr resistant Halomonassp[J].Chemosphere,2012,89(6):764-768.
[18]徐凤琴,代群威,侯丽华,等.碳酸盐矿化菌的分纯及其对Sr2+ 的矿化特性研究[J].高校地质学报,2015,21(3):376-381.
[19]LOWENSTAM H A.Minerals formed by organisms[J].Science,1981,211(4487):1126-1131.
[20]WEINER B S,DOVE P M.An overview of biomineralization processes and the problem of the vital effect[J].Review in Mineralogy & Geochemistry,2003,54(1):1-29.
[21]钱春香,许燕波,胡黎明,等.一种微生物固结污染体系中Cu2+的研究[J].环境科学与技术,2011,34(12):33-36.
[22]路永正,阎百兴.重金属在松花江沉积物中的竞争吸附行为及pH的影响[J].环境科学研究,2010,23(1):20-25.
[23]王明明,钱春香.磷酸盐矿化菌矿化重金属离子Zn2+ 的研究[J].功能材料,2013,44(3):393-395.
[24]许朝阳,柏庭春,孟涛,等.铁细菌A 生物修复铅铜污染土壤[J].河海大学学报(自然科学版),2015,43(6):569-573.
[25]竹文坤,牟涛,段涛,等.碳酸盐矿化菌对模拟放射性Sr2+ 的成矿作用[J].环境科学研究,2015,28(1):157-162.
[26]LI L,QIAN C X,CHENG L,et al.A laboratory investigation of microbe-inducing CdCO3 precipitate treatment in Cd2+ contaminated soil[J].Journal of Soils & Sediments,2010,10(2):248-254.

备注/Memo

备注/Memo:
收稿日期:2017-04-14。
基金项目:国家自然科学基金资助项目(41302025,41541016)。
作者简介:赵兴青(1974—),女,江苏高邮人,博士,副教授。E-mail: zhaoxq@cczu.edu.cn
更新日期/Last Update: 2018-02-20