[1]杨 克,张 平,纪 虹,等.有毒气体对含菌超细水雾降解与抑制甲烷爆炸的影响研究[J].常州大学学报(自然科学版),2018,30(01):28-34.[doi:10.3969/j.issn.2095-0411.2018.01.005]
 YANG Ke,ZHANG Ping,JI Hong,et al.Experimental Study on Impacts of Poisonous Gas on Methane Degradation and Explosion Inhibition by Ultra-Fine Water Mist Containing Bacteria[J].Journal of Changzhou University(Natural Science Edition),2018,30(01):28-34.[doi:10.3969/j.issn.2095-0411.2018.01.005]
点击复制

有毒气体对含菌超细水雾降解与抑制甲烷爆炸的影响研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第30卷
期数:
2018年01期
页码:
28-34
栏目:
安全工程
出版日期:
2018-01-28

文章信息/Info

Title:
Experimental Study on Impacts of Poisonous Gas on Methane Degradation and Explosion Inhibition by Ultra-Fine Water Mist Containing Bacteria
作者:
杨 克1张 平1纪 虹2左嘉琦1郝永梅1邢志祥1
1.常州大学 环境与安全工程学院,江苏 常州 213164; 2.常州大学 石油工程学院,江苏 常州 213016
Author(s):
YANG Ke1 ZHANG Ping1 JI Hong2ZUO Jiaqi1 HAO Yongmei1 XING Zhixiang1
1. School of Environmental & Safety Engineering, Changzhou University, Changzhou 213164, China; 2. School of Petroleum Engineering, Changzhou University, Changzhou 213016, China
关键词:
甲烷氧化菌 超细水雾 有毒气体 甲烷单加氧酶
Keywords:
methane-oxidizing bacteria ultra-fine water mist poisonous gas methane monooxygenase
分类号:
TD 712
DOI:
10.3969/j.issn.2095-0411.2018.01.005
文献标志码:
A
摘要:
通过搭建小尺寸实验平台,研究了含甲烷氧化菌的超细水雾对含有一定体积分数的一氧化碳、硫化氢、二氧化硫的甲烷气体爆炸的降解与抑制效果,分析了甲烷降解率、甲烷单加氧酶活性的变化以及甲烷爆炸过程的变化状况。单因素实验结果表明单一的CO,H2S或者SO2对含菌超细水雾降解甲烷并无明显影响; 多因素实验结果表明φ(CO):φ(H2S):φ(SO2)=0.1%:0.003 3%:0.025%时,有毒混合气体对实验管道内甲烷降解率产生了明显的抑制作用,使得甲烷的降解率下降。有毒气体对甲烷爆炸的火焰外观形态并未产生明显影响,爆炸产生的火焰经历了“指形”—“郁金香形”—“指形”的变化过程,整个过程火焰呈现亮黄色,这与含甲烷氧化菌的超细水雾中含有大量的钠离子有关。
Abstract:
By setting up a small-sized experimental platform, the impacts of the ultra-fine water mist containing methane-oxidizing bacteria on the degradation and explosion of the methane gas with a certain volume fraction of CO,H2S,SO2 are studied, the methane degradation efficiency, the activity change of methane monooxygenase and the change of methane explosion process are analyzed. The single-factor experimental result indicates that single CO,H2S or SO2 has no obvious effects on the methane degradation of the ultra-fine water mist containing methane-oxidizing bacteria. The multi-factor experimental result indicates that the methane degradation efficiency and the activity of MMO come to the lowest when the volume fraction of CO, H2S and SO2 is 0.1%, 0.003 3% and 0.025%, respectively. The methane degradation efficiency is decreased obviously. Poisonous gas has no obvious effects on the flame appearance, the flame produced by the explosion experiences the changing process of “finger-type” —“tulip-type” —“finger-type”, the flame appears luminous yellow during the whole process, which relates to a mass of sodion of the ultra-fine water mist containing methane-oxidizing bacteria.

参考文献/References:

[1]ADIGA K C, ROBERT F, HATCHER J,et al. A computational and experimental study of ultra fine water mist as a total flooding agent[J]. Fire Safety Journal, 2007, 42(2): 150-160.
[2]ADIGA K C, HEATHER D W,RAMAGOPAL A,et al. Implications of droplet breakup and formation of ultra fine mist in blast mitigation[J]. Fire Safety Journal, 2009, 44(3): 363-369.
[3]林滢,李孝斌,宋久壮. 超细水雾抑制瓦斯爆炸的可行性研究[J]. 矿业安全与环保, 2006, 33(4): 15-17.
[4]CAO X Y, REN J J, BI M S,et al. Experimental research on the characteristics of methane/air explosion affected by ultrafine water mist[J]. Journal of Hazardous Materials, 2017, 324: 489-497.
[5]CAO X Y, REN J J, BI M S,et al. Experimental research on methane/air explosion inhibition using ultrafine water mist containing additive[J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 352-360.
[6]CAO X Y, REN J J, ZHOU Y H,et al. Suppression of methane/air explosion by ultrafine water mist containing sodium chloride additive[J]. Journal of Hazardous Materials, 2015, 285: 311-318.
[7]ZHANG P P,ZHOU Y H,CAO X Y,et al. Mitigation of methane/air explosion in a closed vessel by ultrafine water fog[J]. Safety Science, 2014, 62: 1-7.
[8]裴蓓,余明高,陈立伟,等. CO2-双流体细水雾抑制管道甲烷爆炸实验[J]. 化工学报, 2016(7): 3101-3108.
[9]余明高,朱新娜,裴蓓,等. 二氧化碳-超细水雾抑制甲烷爆炸实验研究[J]. 煤炭学报, 2015(12): 2843-2848.
[10]谷睿,王喜世,许红利. 超细水雾抑制甲烷爆炸的实验研究(英文)[J]. 火灾科学, 2010(2): 51-59.
[11]张瑞林,崔学锋. 厌氧微生物降解原煤体吸附甲烷试验研究[J]. 煤炭科学技术, 2016, 44(5): 155-159.
[12]田坤云,崔学锋,张瑞林. 低氧条件下好氧型微生物降解煤吸附甲烷实验[J]. 中国安全生产科学技术, 2016, 12(4): 30-34.
[13]田坤云,张瑞林,崔学锋. 微生物治理煤矿瓦斯的现状和问题[J]. 煤炭技术, 2016, 35(6): 135-137.
[14]陈东科,王璐,金龙哲,等. 利用微生物技术治理煤矿瓦斯的研究展望[J]. 矿业安全与环保, 2005, 32(6): 49-50.
[15]侯晨涛. 煤矿瓦斯的微生物治理技术[J]. 煤田地质与勘探, 2007, 35(4): 30-33.
[16]TANG J X, MAO F, GUO Z J,et al. Study on gas control in coal mine by methanotrophic bacteria [J]. Advanced Materials Research, 2012, 602/603/604: 1309-1312.
[17]BOGDAN P,ALAIN C,BERNARD V. Tulip flame—the mechanism of flame front inversion[J]. Combustion & Flame, 2014, 161(12): 3051-3062.

备注/Memo

备注/Memo:
收稿日期:2017-09-24。
基金项目:国家自然科学基金资助项目(51704041,51574046); 安全生产重特大事故防治关键技术科技项目(jiangsu-0015-2017AQ, 0003-2016AQ)。
作者简介:杨克(1982—),男,山西陵川人,博士,讲师。E-mail: yangke@cczu.edu.cn
更新日期/Last Update: 2018-02-20