[1]刘杨,张中勋,伍铭慧,等.氧化石墨烯修饰壳聚糖基支架的构建及其作为骨修复材料的研究[J].常州大学学报(自然科学版),2018,30(01):87-92.[doi:10.3969/j.issn.2095-0411.2018.01.014]
 LIU Yang,ZHANG Zhongxun,WU Minghui,et al.Preparation of Chitosan Scaffold Modified by Graphene Oxide and Its Potential Applications as Bone Repair Material[J].Journal of Changzhou University(Natural Science Edition),2018,30(01):87-92.[doi:10.3969/j.issn.2095-0411.2018.01.014]
点击复制

氧化石墨烯修饰壳聚糖基支架的构建及其作为骨修复材料的研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第30卷
期数:
2018年01期
页码:
87-92
栏目:
生物医学工程
出版日期:
2018-01-28

文章信息/Info

Title:
Preparation of Chitosan Scaffold Modified by Graphene Oxide and Its Potential Applications as Bone Repair Material
作者:
刘杨张中勋伍铭慧秦勇邓林红
常州大学 生物医学工程与健康科学研究院,江苏 常州 213164
Author(s):
LIU Yang ZHANG Zhongxun WU Minghui QIN Yong DENG Linhong
Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164, China
关键词:
壳聚糖 氧化石墨烯 骨修复 生物材料
Keywords:
chitosan graphene oxide bone repair biomaterials
分类号:
R 318.08
DOI:
10.3969/j.issn.2095-0411.2018.01.014
文献标志码:
A
摘要:
为提高壳聚糖基支架材料的力学性能,尝试通过引入氧化石墨烯分子对壳聚糖基支架材料进行了化学修饰(GO/CS),并对改性前后的壳聚糖基支架材料的微观结构、理化性能和生物学性能进行了评价。FTIR分析表明氧化石墨烯与壳聚糖分子发生了有效的接枝。SEM照片显示GO/CS材料内部具有均一的三维多孔结构,孔洞尺寸分布在数十微米且相互连通。改性之后的材料具有较好的保湿性能和高孔隙率。相对于纯壳聚糖支架,材料的力学性能显著提升。此外,细胞实验结果还表明氧化石墨烯改性之后的材料具有良好的生物相容性。本研究获得的氧化石墨烯改性壳聚糖支架有可能为骨组织工程材料提供一种新选择。
Abstract:
In order to improve the mechanical properties of the chitosan-based scaffold, the grapheme oxide was introduced into the chitosan scaffold through chemical modification by making use of 1-Ethyl-3-(3-dimethyl aminopropyl)carbodiimide(EDC)and N-hydroxysuccinimide(NHS)as the cross-linker in this study. Micro-structure, physicochemical properties and biocompatibility of the grapheme oxide modified chitosan scaffolds(GO/CS)were characterized. The results of fourier transform infrared spectroscopy(FTIR)test show that the grapheme oxide was crosslinked with chitosan molecular successfully. SEM photos indicate that the GO/CS scaffold has a uniform three-dimensional porous structure. Compared with the pure chitosan scaffold, mechanical performance of the GO/CS scaffold significantly increased. In addition, the cell experimental results indicate that the MC3T3 osteoblasts can grow and proliferate well in the GO/CS scaffold. This grapheme oxide modified chitosan scaffold, which can be prepared in large quantities and at low cost, should have potential application in bone tissue engineering.

参考文献/References:

[1]BALLARRE J, MANJUBALA I, SCHREINER W H, et al. Improving the osteointegration and bone-implant interface by incorporation of bioactive particles in sol-gel coatings of stainless steel implants[J]. Acta Biomater, 2010, 6: 1601-1609.
[2]KANG S, PARK J B, LEE T J, et al. Covalent conjugation of mechanically stiff graphene oxide flakes to three-dimensional collagen scaffolds for osteogenic differentiation of human mesenchymal stem cells[J]. Carbon, 2015, 83:162-172.
[3]BIGGS M J, DALBY M J. Focal adhesions in osteoneogenesis[J]. Proc Inst Mech Eng H, 2011, 224:1441-1453.
[4]DEPAN D, GIRASE B, SHAH J S, et al. Structure-process property relationship of the polar graphene oxide-mediated cellular response and stimulated growth of osteoblasts on hybrid chitosan network structure nanocomposite scaffolds[J]. Acta Biomater, 2011, 7:3432-3445.
[5]TAMPIERI A, CELOTTI G, LANDI E, et al. Biologically inspired synthesis of bone-like composite: selfassembled collagen fibers/hydroxyapatite nanocrystals[J]. J Biomed Mater Res A, 2003, 67:618-625.
[6]YU P, BAO R Y, SHI X J, et al. Self-assembled high-strength hydroxyapatite/grapheneoxide/chitosan composite hydrogel for bone tissue engineering[J]. Carbphyd Polym, 2017, 155:507-515.
[7]LANGER R, VACANTI J P. Tissue engineering[J]. Science, 1993, 260:920-926.
[8]PEPPAS N A, LARGER R. New challenges in biomaterials[J]. Science, 1994; 263: 1715-1720.
[9]CRANE G M, LSHAUG S L, MIKOS A G. Bone tissue engineering[J]. Nature Med, 1995, 1:1322-1326.
[10]CHEN S H, ZHENG L Z, XIE X H, et al. Comparative study of poly(lactic-co-glycolic acid)/tricalcium phosphate scaffolds incorporated or coated with osteogenic growth factors for enhancement of bone regeneration[J]. J Orthopa Transl, 2014, 2: 91-104.
[11]BELLUCCI D, SOLA A, GENTILE P, et al. Biomimetic coating on bioactive glass-derived scaffolds mimicking bone tissue[J]. J Biomed Mater Res A, 2012, 100A: 3259-3266.
[12]HUTMACHER D W. Scaffolds in tissue engineering bone and cartilage[J]. Biomaterials, 2000, 21: 2529-2543.
[13]GARCIA M A, PEREZ L. Effect of molecular weight reduction by gammairradiation on chitosan film properties[J]. Mat Sci Eng C, 2015, 55: 174-180.
[14]LIU Y, SHEN X, ZHOU H, et al. Chemical modification of chitosan film via surface grafting of citric acid molecular to promote the biomineralization[J]. Appl Surf Sci, 2016, 370:270-278.
[15]MA X Y, FENG Y F, MA Z S, et al. The promotion of osteointegration under diabetic conditions using chitosan/hydroxyapatite composite coating on porous titanium surfaces[J]. Biomaterials, 2014, 35: 7259-7270.
[16]LIU Y, JI P H, LYU H L, et al. Gentamicin modified chitosan film with improved antibacterial property and cell biocompatibility[J]. Int J Biol Macromol, 2017, 98:550-556.
[17]YANG X Y, WANG Y S, HUANG X, et al. Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting functionand pH sensitivity[J]. J Mater Chem, 2011, 21: 3448-3454.
[18]YANG X M, TU Y F, LI L, et al. Well-dispersed chitosan/graphene oxide nanocomposites[J]. ACS Appl Mater Inter, 2010, 2:1707-1713.

相似文献/References:

[1]彭勇刚,纪俊玲,汪媛,等.ZnSn(OH)6/氧化石墨烯复合材料的水热合成及其光催化性能[J].常州大学学报(自然科学版),2016,(04):25.[doi:10.3969/j.issn.2095-0411.2016.04.005]
 PENG Yonggang,JI Junling,WANG Yuan,et al.Hydrothermal Preparation of ZnSn(OH)6/GO Composites and Their Photocatalytic Activities[J].Journal of Changzhou University(Natural Science Edition),2016,(01):25.[doi:10.3969/j.issn.2095-0411.2016.04.005]
[2]刘杨,沈欣,任彦,等.柠檬酸改性壳聚糖膜材料的构建及其性能研究[J].常州大学学报(自然科学版),2017,(03):77.[doi:10.3969/j.issn.2095-0411.2017.03.011]
 LIU Yang,SHEN Xin,REN Yan,et al.Preparation and Performance of a Chitosan Film Modified by Citric Acid[J].Journal of Changzhou University(Natural Science Edition),2017,(01):77.[doi:10.3969/j.issn.2095-0411.2017.03.011]
[3]王泽军,欧红香,王利平,等.多孔壳聚糖印迹聚合物吸附分离阿莫西林性能研究[J].常州大学学报(自然科学版),2018,30(02):37.[doi:10.3969/j.issn.2095-0411.2018.02.006]
 WANG Zejun,OU Hongxiang,WANG Liping,et al.Performance of Porous-Chitosan Imprinted Polymers for Adsorption of Amoxicillin[J].Journal of Changzhou University(Natural Science Edition),2018,30(01):37.[doi:10.3969/j.issn.2095-0411.2018.02.006]
[4]王 莹,顾正鹏,崔玲玲,等.氧化石墨烯对钛合金表面水润滑性能的影响[J].常州大学学报(自然科学版),2019,31(03):57.[doi:10.3969/j.issn.2095-0411.2019.03.006]
 WANG Ying,GU Zhengpeng,CUI Lingling,et al.Effect of Graphene Oxide on Water Lubrication on the Surface of Titanium Alloy[J].Journal of Changzhou University(Natural Science Edition),2019,31(01):57.[doi:10.3969/j.issn.2095-0411.2019.03.006]
[5]朱 劼,李 丹,丁雪洁,等.温敏高分子修饰氧化石墨烯负载钌催化剂的制备及选择加氢活性[J].常州大学学报(自然科学版),2019,31(06):1.
 ZHU Jie,LI Dan,DING Xuejie,et al.A Ru Catalyst Supported on Temperature-Sensitive Polymer Grafted Graphene Oxide and Its Catalytic Activity in Selective Hydrogenation Activity[J].Journal of Changzhou University(Natural Science Edition),2019,31(01):1.
[6]郑旭东,张 奕,季 蓉,等.双模板导向印迹复合膜的制备及其回收Nd3+的研究[J].常州大学学报(自然科学版),2019,31(06):69.
 ZHENG Xudong,ZHANG Yi,JI Rong,et al.Preparation of Dual-Template Docking Oriented Imprinted Composite Film and Its Recovery of Nd3+[J].Journal of Changzhou University(Natural Science Edition),2019,31(01):69.
[7]郑旭东,崔亚文,王丹丹,等.印迹复合壳聚糖膜的制备及其选择性吸附分离铜离子[J].常州大学学报(自然科学版),2022,34(06):9.[doi:10.3969/j.issn.2095-0411.2022.06.002]
 ZHENG Xudong,CUI Yawen,WANG Dandan,et al.Preparation of Imprinted Composite Chitosan Membrane and Their Selective Adsorption and Separation of Copper Ions[J].Journal of Changzhou University(Natural Science Edition),2022,34(01):9.[doi:10.3969/j.issn.2095-0411.2022.06.002]

备注/Memo

备注/Memo:
收稿日期:2017-09-10。
基金项目:江苏省科技厅自然科学基金面上项目(BK20171196); 江苏省教育厅自然科学基金面上项目(15KJB310001)。
作者简介:刘杨(1985—),男,湖北仙桃人,博士,讲师。E-mail: liuyang@cczu.edu.cn
更新日期/Last Update: 2018-02-20