[1]卿青,郭琪,周琳琳,等.SnCl4催化玉米芯高效制备乙酰丙酸的工艺研究[J].常州大学学报(自然科学版),2018,30(02):14-22.[doi:10.3969/j.issn.2095-0411.2018.02.003]
 QING Qing,GUO Qi,ZHOU Linlin,et al.Study on High Efficiency Catalytical Preparation of Levulinic Acid from Corncob by SnCl4[J].Journal of Changzhou University(Natural Science Edition),2018,30(02):14-22.[doi:10.3969/j.issn.2095-0411.2018.02.003]
点击复制

SnCl4催化玉米芯高效制备乙酰丙酸的工艺研究()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第30卷
期数:
2018年02期
页码:
14-22
栏目:
化学化工
出版日期:
2018-03-31

文章信息/Info

Title:
Study on High Efficiency Catalytical Preparation of Levulinic Acid from Corncob by SnCl4
作者:
卿青郭琪周琳琳高晓航张跃
常州大学 制药与生命科学学院,江苏 常州 213164
Author(s):
QING Qing GUO Qi ZHOU Linlin GAO Xiaohang ZHANG Yue
School of Pharmaceutical Engineering & Life Sciences, Changzhou University, Changzhou 213164, China
关键词:
乙酰丙酸 玉米芯 响应面法 金属氯化物 催化反应
Keywords:
levulinic acid corncob response surface method metal chlorides catalytic reaction
分类号:
TK 8
DOI:
10.3969/j.issn.2095-0411.2018.02.003
文献标志码:
A
摘要:
以金属氯化物为催化剂,采用高温高压法催化玉米芯制备乙酰丙酸。考察了不同金属离子对催化后各个产物的影响,并采用响应面法考察了底物质量浓度、催化剂浓度、反应温度和时间对乙酰丙酸产率的影响,对催化体系进行了优化,建立二次回归模型并进行验证。结果表明:底物质量浓度为25 g/L,催化剂浓度为80 mmol/L,在193 ℃下反应10 min时所得乙酰丙酸产率最大,为78.06%。
Abstract:
Levulinic acid(LA)was catalytically prepared from corncobs at high temperature and with different metal chlorides. The influence of different types of metal ions on product distribution during catalytic reaction has been investigated. Furthermore, for the purpose of increasing LA yield in this catalytic system, four factors including substrate concentration, catalyst concentration, reaction temperature and time were studied by response surface method(RSM). This catalytic system was optimized and quadratic regression model was established and verificated. The experimental results indicated that the optimal conditions are as follows:the substrate concentration was 25 g/L, SnCl4·5H2O concentration was 80 mmol/L, the temperature was 193 ℃ and the time was 10 min, the highest LA yield could reach to 78.06%.

参考文献/References:

[1]姜楠, 谢楠, 齐崴, 等. 硫酸催化葡萄糖制备LA的过程强化〖J〗. 化工进展, 2014, 33(11): 2888-2893.
[2]QING Q, GUO Q, ZHOU L, et al. Enhancement of in situ enzymatic saccharification of corn stover by a stepwise sodium hydroxide and organic acid pretreatment〖J〗. Appl Biochem Biotechnol, 2016, 181(1): 350-365.
[3]QING Q, ZHOU L, HUANG M, et al. Improving enzymatic saccharification of bamboo shoot shell by alkali salt pretreatment with H2O2〖J〗. Bioresource Technol, 2016, 201: 230-236.
[4]王关斌, 赵光辉, 贺东海, 等. 玉米芯资源的综合利用〖J〗. 林产化工通讯, 2005, 39(5): 44-47.
[5]王红彦, 张轩铭, 王道龙, 等. 中国玉米芯资源量估算及其开发利用〖J〗. 中国农业资源与区划, 2016, 37(1): 1-8.
[6]刘志彬, 任爱胜, 高春雨, 等. 中国农业生物质资源发电潜力评估木〖J〗. 中国农业资源与区划, 2014, 35(4): 133-140.
[7]常春, 马晓建, 岑沛霖, 等. 生物质制备新型平台化合物LA〖J〗. 太阳能学报, 2007, 28(4): 380-384.
[8]JEONG G, Production of levulinic acid from glucosamine by dilute-acidcatalyzed hydrothermal process〖J〗. Ind Crop Prod, 2014,62: 77-83.
[9]JEONG H, JANG S, HONG C, et al. Levulinic acid production by two-step acid-catalyzed treatment of Quercus mongolica using dilute sulfuric acid〖J〗. Bioresource Technol, 2017, 225: 183-190.
[10]WEINGARTEN R, CONNER W, HUBER G. Production of levulinic acid from cellulose by hydrothermal decomposition combined with aqueous phase dehydration with a solid acid catalyst〖J〗. Energ Environ Sci, 2012, 5(6): 7559-7574.
[11]UPARE P, YOON J, KIM M, et al. Chemical conversion of biomass-derived hexose sugars to levulinic acid over sulfonic acid-functionalized graphene oxide catalysts〖J〗. Green Chem, 2013, 15: 2935-2943.
[12]ANTONETTI C, LICURSI D, FULIGNATI S, et al. New frontiers in the catalytic synthesis of levulinic acid: from sugars to raw and waste biomass as starting feedstock〖J〗. Catalysts, 2016, 6(12): 196-225.
[13]LIN H, STRULL J, LIU Y, et al. High yield production of levulinic acid by catalytic partial oxidation of cellulose in aqueous media〖J〗. Energ Environ Sci, 2012, 5: 9773-9777.
[14]RACKEMANN D, DOHERTY W. The conversion of lignocellulosics to levulinic acid〖J〗. Biofuel Bioprod Bion, 2015, 5(2): 198-214.
[15]HEGNER J, PEREIRA K, DEBOEF B, et al. Conversion of cellulose to glucose and levulinic acid via solid-supported acid catalysis〖J〗. Tetrahedron Lett, 2010, 51: 2356-2358.
[16]WANG J, XU W, REN J, et al. Efficient catalytic conversion of fructose into hydroxymethylfurfural by a novel carbon-based solid acid〖J〗. Green Chem, 2011, 13: 2678-2681.
[17]ZHENG X, ZHI Z, GU X, et al. Kinetic study of levulinic acid production from corn stalk at mild temperature using FeCl3 as catalyst〖J〗. Fuel, 2017, 187: 261-267.
[18]CAO X, PENG X, SUN S, et al. Hydrothermal conversion of xylose, glucose, and cellulose under the catalysis of transition metal sulfates〖J〗. Carbohyd Polym, 2015, 118: 44-51.
[19]PENG L, LIN L, ZHANG J, et al. Catalytic conversion of cellulose to levulinic acid by metal chlorides〖J〗. Molecules, 2010, 15: 5172-5258.
[20]LI J, JIANG Z, HU L, et al. Selective conversion of cellulose in corncob residue to levulinic acid in an aluminum trichloride-sodium chloride system〖J〗. ChemSusChem, 2014, 7: 2482-2488.

备注/Memo

备注/Memo:
收稿日期:2017-11-19。
基金项目:江苏省高校自然科学研究面上项目(15KJB530002); 江苏省自然科学基金青年基金(BK20140258)。
作者简介:卿青(1982—),女,湖南长沙人,博士,副教授。E-mail: qqing@cczu.edu.cn
更新日期/Last Update: 2018-03-20