参考文献/References:
[1] WONGSIRIAMNUAY T, TIPPAYAWONG N. Thermogravimetric analysis of giant sensitive plants under air atmosphere[J]. Bioresource Technology, 2010, 101(23): 9314-20.
[2]MAGDZIARZ A, WILK M. Thermal characteristics of the combustion process of biomass and sewage sludge[J]. Journal of Thermal Analysis and Calorimetry, 2013, 114(2): 519-529.
[3]肖波. 生物质热化学转化技术[M]. 北京:冶金工业出版社, 2016.
[4]何玉凤, 钱文珍, 王建凤,等. 废弃生物质材料的高附加值再利用途径综述[J]. 农业工程学报, 2016, 32(15): 1-8.
[5]ZHAO P, SHEN Y, GE S, et al. Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment[J]. ChemInform, 2016, 47(3): 345-367.
[6]谢长城. 2014年中国大豆市场回顾及2015年展望[J]. 中国畜牧杂志, 2015, 51(2): 67-71.
[7]DOLAH B N M, DERAMAN M, OTHMAN M A R, et al. A method to produce binderless supercapacitor electrode monoliths from biomass carbon and carbon nanotubes[J]. Materials Research Bulletin, 2014, 60(60): 10-19.
[8]WHITE R J, ANTONIETTI M, TITIRICI M M. Naturally inspired nitrogen doped porous carbon[J]. Journal of Materials Chemistry, 2009, 19(45): 8645-8650.
[9]DING L, ZOU B, SHEN L, et al.A simple route for consecutive production of activated carbon and liquid compound fertilizer from rice husk[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2014, 446(5): 90-96.
[10]SING K S W, EVERETT D H, HAUL R A W, et al. Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity(recommendations 1984)[J]. Pure and Applied Chemistry, 1984, 57(4): 603-619.
[11]LIU M, GAN L, XIONG W, et al. Nickel-doped activated mesoporous carbon microspheres with partially graphitic structure for supercapacitors[J]. Energy & Fuels, 2013, 27(2): 1168-1173.
[12]MA G, YANG Q, SUN K, et al.Nitrogen-doped porous carbon derived from biomass waste for high-performance supercapacitor[J]. Bioresource Technology, 2015, 197: 137-142.
[13]CHENG P, GAO S, ZANG P, et al. Hierarchically porous carbon by activation of shiitake mushroom for capacitive energy storage[J]. Carbon, 2015, 93: 315-324.
[14]WANG D, GENG Z, LI B, et al.High performance electrode materials for electric double-layer capacitors based on biomass-derived activated carbons[J]. Electrochimica Acta, 2015, 173: 377-384.
[15]CHEN H, LIU D, SHEN Z, et al. Functional biomass carbons with hierarchical porous structure for supercapacitor electrode materials[J]. Electrochimica Acta, 2015, 180: 241-251.
[16]WANG H, YU W, JING S, et al. Biomass derived hierarchical porous carbons as high-performance anodes for sodium-ion batteries[J]. Electrochimica Acta, 2016, 188: 103-110.
[17]LI Y, YU N, YAN P, et al. Fabrication of manganese dioxide nanoplates anchoring on biomass-derived cross-linked carbon nanosheets for high-performance asymmetric supercapacitors[J]. Journal of Power Sources, 2015, 300: 309-317.
[18]RUFFORD T E, HULICOVA-JURCAKOVA D, ZHU Z, et al.Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors[J]. Electrochemistry Communications, 2008, 10(10): 1594-1597.
[19]LI D, LI C, TIAN Y, et al.Influences of impregnation ratio and activation time on ultramicropores of peanut shell active carbons[J]. Materials Letters, 2015, 141(1): 340-343.
[20]AELTERMAN P, FREGUIA S, KELLER J, et al. The anode potential regulates bacterial activity in microbial fuel cells[J]. Applied Microbiology and Biotechnology, 2008, 78(3): 409-418.
[21]贺强礼,刘文斌,杨海君,等. 一株苯酚降解菌的筛选鉴定及响应面法优化其降解[J]. 环境科学学报, 2016, 36(1): 112-123.
[22]WANG Y, ZHOU J, JIANG L, et al.Development of low-cost DDGS-based activated carbons and their applications in environmental remediation and high-performance electrodes for supercapacitors[J]. Journal of Polymers and the Environment, 2015, 23(4): 595-605.
[23]WEI T, WEI X, GAO Y, et al.Large scale production of biomass-derived nitrogen-doped porous carbon materials for supercapacitors[J]. Electrochimica Acta, 2015, 169: 186-194.
[24]SEVILLA M, MOKAYA R. Energy storage applications of activated carbons: supercapacitors and hydrogen storage[J]. Energy & Environmental Science, 2014, 7(4): 1250-1280.
[25]SYCH N V, TROFYMENKO S I, PODDUBNAYA O I, et al.Porous structure and surface chemistry of phosphoric acid activated carbon from corncob[J]. Applied Surface Science, 2012, 261(1): 75-82.
[26]ADHIKARI M P, ADHIKARI R, SHRESTHA R G, et al. Nanoporous activated carbons derived from agro-waste corncob for enhanced electrochemical and sensing performance[J]. Bulletin of the Chemical Society of Japan, 2015, 88(8): 1108-1115.
[27]DING L, ZOU B, LI Y, et al.The production of hydrochar-based hierarchical porous carbons for use as electrochemical supercapacitor electrode materials[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2013, 423(423): 104-111.
[28]TSENG R L, TSENG S K, WU F C, et al. Effects of micropore development on the physicochemical properties of KOH-activated carbons[J]. Journal of the Chinese Institute of Chemical Engineers, 2008, 39(1): 37-47.
[29]WAN M A W D, WAN S W A, SULAIMAN M Z. The effects of carbonization temperature on pore development in palm-shell-based activated carbon[J]. Carbon, 2000, 38(14): 1925-1932.
[30]KUMAGAIS, SATO M, TASHIMA D. Electrical double-layer capacitance of micro- and mesoporous activated carbon prepared from rice husk and beet sugar[J]. Electrochimica Acta, 2013, 114(14): 617-626.
[30]闻斌,魏双,施展,等. 稻壳多孔碳材料的电容性能及模型计算[J]. 高等学校化学学报, 2013, 34(3): 674-678.