参考文献/References:
[1] LIU J, LIU Y, LIU N, et al. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway[J]. Science, 2015, 347(6225): 970-974.
[2]LUMB M P, MACK S, SCHMIEDER K J, et al. GaSb-based solar cells for full solar spectrum energy harvesting[J]. Advanced Energy Materials, 2017, 7(20): 1700345-1700353.
[3]LIU L, CHEN X. Titanium dioxide nanomaterials: self-structural modifications[J]. Chemical Reviews, 2014, 114(19): 9890-9918.
[4]唐波,周鹏飞,吴东伟.石墨烯修饰的TiO2光催化剂性能研究[J].常州大学学报(自然科学版),2017,29(6): 48-54.
[5]杨辉龙,段家骥,张福长,等. ZnO/石墨烯复合材料的制备及其光催化性能[J].常州大学学报(自然科学版),2017,29(3): 13-17.
[6]CHENG R, ZHANG L, FAN X, et al. One-step construction of FeOx modified g-C3N4 for largely enhanced visible-light photocatalytic hydrogen evolution[J]. Carbon, 2016, 101(1): 62-70.
[7]VELáZQUEZ J J, FERNáNDEZ-GONZáLEZ R, DíAZ L, et al. Effect of reaction temperature and sacrificial agent on the photocatalytic H2-production of Pt-TiO2[J]. Journal of Alloys and Compounds, 2017, 721(15): 405-410.
[8]MA D, SHI J W, ZOU Y, et al. Highly efficient photocatalyst based on a CdS quantum dots/ZnO nanosheets 0D/2D heterojunction for hydrogen evolution from water splitting[J]. ACS Applied Materials & Interfaces, 2017, 9(30): 25377-25386.
[9]YE L, SU Y, JIN X, et al. Recent advances in BiOX(X= Cl, Br and I)photocatalysts: synthesis, modification, facet effects and mechanisms[J]. Environmental Science: Nano, 2014, 1(2): 90-112.
[10]LI H, LI J, AI Z, et al. Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity and perspective[J]. Angewandte Chemie, 2017, 129(1): 2-20.
[11]CHENG H, HUANG B, DAI Y. Engineering BiOX(X= Cl, Br, I)nanostructures for highly efficient photocatalytic applications[J]. Nanoscale, 2014, 6(4): 2009-2026.
[12]王恒,李瑞,樊彩梅.BiOCl光催化剂的改性和固定化研究进展[J].山西化工,2013,33(5): 27-31.
[13]LIM S Y, SHEN W, GAO Z. Carbon quantum dots and their applications[J]. Chemical Society Reviews, 2015, 44(1): 362-381.
[14]YAN M, ZHU F, GU W, et al. Construction of nitrogen-doped graphene quantum dots-BiVO4/g-C3N4 Z-scheme photocatalyst and enhanced photocatalytic degradation of antibiotics under visible light[J]. RSC Advances, 2016, 6(66): 61162-61174.
[15]YEH T F, TENG C Y, CHEN S J, et al. Nitrogen-doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination[J]. Advanced Materials, 2014, 26(20): 3297-3303.
[16]WU M Q, GAO J H, ZHANG S R, et al. Synthesis and characterization of aerogel-like mesoporous nickel oxide for electrochemical supercapacitors[J]. Journal of Porous Material, 2006,3(13): 407-412.
[17]DENG F, LU X, ZHONG F, et al. Fabrication of 2D sheet-like BiOCl/carbon quantum dots hybrids via a template-free coprecipitation method and their tunable visible-light photocatalytic activities derived from different size distributions of carbon quantum dots[J]. Nanotechnology, 2015, 27(6): 65701-65709.
[18]LIN W, YU X, SHEN Y, et al. Carbon dots/BiOCl films with enhanced visible light photocatalytic performance[J]. Journal of Nanoparticle Research, 2017, 19(2): 56-66.
[19]ZHANG Y, LIU X, FAN Y, et al. One-step microwave synthesis of N-doped hydroxyl-functionalized carbon dots with ultra-high fluorescence quantum yields[J]. Nanoscale, 2016, 8(33): 15281-15287.
[20]HAIDER Z, ZHENG J Y, KANG Y S. Surfactant free fabrication and improved charge carrier separation induced enhanced photocatalytic activity of {001} facet exposed unique octagonal BiOCl nanosheets[J]. Physical Chemistry Chemical Physics, 2016, 18(29): 19595-19604.
[21]LI Q, GUAN Z, WU D, et al. Z-scheme BiOCl-Au-CdS heterostructure with enhanced sunlight-driven photocatalytic activity in degrading water dyes and antibiotics[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 6958-6968.
[22]MI Y, WEN L, WANG Z, et al. Fe(III)modified BiOCl ultrathin nanosheet towards high-efficient visible-light photocatalyst[J]. Nano Energy, 2016, 30(1): 109-117.
[23]ZHU M, LIU Q, CHEN W, et al. Boosting the visible-light photoactivity of BiOCl/BiVO4/N-GQDs ternary heterojunctions based on internal Z-Scheme charge transfer of N-GQDs: simultaneous band gap narrowing and carrier lifetime prolonging[J]. ACS Applied materials & Interfaces, 2017, 9(44): 38832-38841.
[24]MA Z, MING H, HUANG H, et al. One-step ultrasonic synthesis of fluorescent N-doped carbon dots from glucose and their visible-light sensitive photocatalytic ability[J]. New Journal of Chemistry, 2012, 36(4): 861-864.
[25]ZOU J P, WANG L C, LUO J, et al. Synthesis and efficient visible light photocatalytic H2 evolution of a metal-free g-C3N4/graphene quantum dots hybrid photocatalyst[J]. Applied Catalysis B: Environmental, 2016, 193(1): 103-109.
[26]DI J, XIA J, JI M, et al. Nitrogen-doped carbon quantum dots/BiOBr ultrathin nanosheets: in situ strong coupling and improved molecular oxygen activation ability under visible light irradiation[J]. ACS Sustainable Chemistry & Engineering, 2015, 4(1): 136-146.
[27]ZHANG X Y, LI H P, LIN Y H, et al. Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting chin[J]. Journal of Materials Chemistry, 2010, 20(14): 2801-2806.