[1]邬纯晶,杨 超,曹剑瑜,等.水热法合成NCQD/BiOCl复合物及其光催化分解水性能[J].常州大学学报(自然科学版),2018,30(03):41-49.[doi:10.3969/j.issn.2095-0411.2018.03.005]
 WU Chunjing,YANG Chao,CAO Jianyu,et al.Hydrothermal Synthesis of NCQD/BiOCl Composites and Their Efficient Photocatalytic Performances for Hydrogen Production from Water[J].Journal of Changzhou University(Natural Science Edition),2018,30(03):41-49.[doi:10.3969/j.issn.2095-0411.2018.03.005]
点击复制

水热法合成NCQD/BiOCl复合物及其光催化分解水性能()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第30卷
期数:
2018年03期
页码:
41-49
栏目:
化学化工
出版日期:
2018-05-28

文章信息/Info

Title:
Hydrothermal Synthesis of NCQD/BiOCl Composites and Their Efficient Photocatalytic Performances for Hydrogen Production from Water
作者:
邬纯晶1杨 超1曹剑瑜12陈智栋12许 娟12
1. 常州大学 石油化工学院,江苏 常州 213164; 2. 江苏省绿色催化材料与技术重点实验室,江苏 常州 213164
Author(s):
WU Chunjing1 YANG Chao1 CAO Jianyu12 CHEN Zhidong12 XU Juan12
1. School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; 2. Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou 213164, China
关键词:
NCQD BiOCl纳米片 光催化 产氢速率
Keywords:
NCQD BiOCl nanosheets photocatalysis hydrogen production rate
分类号:
O 614
DOI:
10.3969/j.issn.2095-0411.2018.03.005
文献标志码:
A
摘要:
以葡萄糖和甘氨酸为原料,首先经水热途径制备了含氮碳量子点(NCQD)。接着以硝酸铋为反应物,聚乙烯吡咯烷酮K30(PVP-K30)为模板剂,NCQD为载体,通过水热法合成得到NCQD/BiOCl复合物。运用透射电镜(TEM)、场发射扫描电镜(FESEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)、紫外-可见吸收光谱(Uv-Vis)和荧光发射光谱对NCQD/BiOCl复合物进行了形貌、结构和物性表征。TEM分析揭示2~3 nm的NCQD均匀分散在BiOCl纳米片表面。在模拟太阳光的条件下,研究了NCQD/BiOCl复合物的光电流和光催化制氢性能。结果显示,NCQD/BiOCl复合物的带隙为2.8 eV,光响应电流约为纯BiOCl的3.6倍。NCQD的质量分数为5%的NCQD/BiOCl复合物显示了最佳的产氢性能,室温下光照5 h后的产氢速率为19.34 μmol·h-1,显著高于相同条件下纯BiOCl的产氢速率(1.06 μmol·h-1)。此外,该复合物具有优异的循环产氢性能,5次光催化后产氢比容量还能保留起始值的98%。
Abstract:
Using glucose and glycine as raw materials, nitrogen-doped carbon dots(NCQD)was prepared firstly via a hydrothermal approach. Then the NCQD/BiOCl composite was synthesized by a hydrothermal method, utilizing bismuth nitrate as the reactant, polyvinylpyrrolidone-K30(PVP-K30)as the template and NCQD as the support, respectively. The morphology, nanostructure and physicochemical properties of the NCQD/BiOCl composite were characterized by transmission electron microscopy(TEM), field emission scanning electron microscopy(FESEM), X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), ultraviolet visible absorption spectroscopy(Uv-Vis)and fluorescence emission spectrum. The TEM characterization reveals that the NCQD with the size of 2~3 nm is well-distributed on the surface of BiOCl nanosheets. Furthermore, the photocurrent response and photocatalytic hydrogen production performances were studied under the irradiation of simulated sunlight. The experimental results show that the band gap of the NCQD/BiOCl composite is 2.8 eV and its photocurrent response is about 3.6 times higher than that of pristine BiOCl. The NCQD/BiOCl composite with a relative NCQD content of 5% shows a highest photocatalytic hydrogen production rate, which reaches 19.34 μmol·h-1 after a 5 h irradiation at room temperature, also remarkably higher than that of the pristine BiOCl(1.06 μmol·h-1). In addition, the NCQD/BiOCl composite exhibits an excellent cyclic stability of hydrogen production. The specific photocatalytic capacity retains 98% of the initial value after 5 cycles.

参考文献/References:

[1] LIU J, LIU Y, LIU N, et al. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway[J]. Science, 2015, 347(6225): 970-974.
[2]LUMB M P, MACK S, SCHMIEDER K J, et al. GaSb-based solar cells for full solar spectrum energy harvesting[J]. Advanced Energy Materials, 2017, 7(20): 1700345-1700353.
[3]LIU L, CHEN X. Titanium dioxide nanomaterials: self-structural modifications[J]. Chemical Reviews, 2014, 114(19): 9890-9918.
[4]唐波,周鹏飞,吴东伟.石墨烯修饰的TiO2光催化剂性能研究[J].常州大学学报(自然科学版),2017,29(6): 48-54.
[5]杨辉龙,段家骥,张福长,等. ZnO/石墨烯复合材料的制备及其光催化性能[J].常州大学学报(自然科学版),2017,29(3): 13-17.
[6]CHENG R, ZHANG L, FAN X, et al. One-step construction of FeOx modified g-C3N4 for largely enhanced visible-light photocatalytic hydrogen evolution[J]. Carbon, 2016, 101(1): 62-70.
[7]VELáZQUEZ J J, FERNáNDEZ-GONZáLEZ R, DíAZ L, et al. Effect of reaction temperature and sacrificial agent on the photocatalytic H2-production of Pt-TiO2[J]. Journal of Alloys and Compounds, 2017, 721(15): 405-410.
[8]MA D, SHI J W, ZOU Y, et al. Highly efficient photocatalyst based on a CdS quantum dots/ZnO nanosheets 0D/2D heterojunction for hydrogen evolution from water splitting[J]. ACS Applied Materials & Interfaces, 2017, 9(30): 25377-25386.
[9]YE L, SU Y, JIN X, et al. Recent advances in BiOX(X= Cl, Br and I)photocatalysts: synthesis, modification, facet effects and mechanisms[J]. Environmental Science: Nano, 2014, 1(2): 90-112.
[10]LI H, LI J, AI Z, et al. Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity and perspective[J]. Angewandte Chemie, 2017, 129(1): 2-20.
[11]CHENG H, HUANG B, DAI Y. Engineering BiOX(X= Cl, Br, I)nanostructures for highly efficient photocatalytic applications[J]. Nanoscale, 2014, 6(4): 2009-2026.
[12]王恒,李瑞,樊彩梅.BiOCl光催化剂的改性和固定化研究进展[J].山西化工,2013,33(5): 27-31.
[13]LIM S Y, SHEN W, GAO Z. Carbon quantum dots and their applications[J]. Chemical Society Reviews, 2015, 44(1): 362-381.
[14]YAN M, ZHU F, GU W, et al. Construction of nitrogen-doped graphene quantum dots-BiVO4/g-C3N4 Z-scheme photocatalyst and enhanced photocatalytic degradation of antibiotics under visible light[J]. RSC Advances, 2016, 6(66): 61162-61174.
[15]YEH T F, TENG C Y, CHEN S J, et al. Nitrogen-doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination[J]. Advanced Materials, 2014, 26(20): 3297-3303.
[16]WU M Q, GAO J H, ZHANG S R, et al. Synthesis and characterization of aerogel-like mesoporous nickel oxide for electrochemical supercapacitors[J]. Journal of Porous Material, 2006,3(13): 407-412.
[17]DENG F, LU X, ZHONG F, et al. Fabrication of 2D sheet-like BiOCl/carbon quantum dots hybrids via a template-free coprecipitation method and their tunable visible-light photocatalytic activities derived from different size distributions of carbon quantum dots[J]. Nanotechnology, 2015, 27(6): 65701-65709.
[18]LIN W, YU X, SHEN Y, et al. Carbon dots/BiOCl films with enhanced visible light photocatalytic performance[J]. Journal of Nanoparticle Research, 2017, 19(2): 56-66.
[19]ZHANG Y, LIU X, FAN Y, et al. One-step microwave synthesis of N-doped hydroxyl-functionalized carbon dots with ultra-high fluorescence quantum yields[J]. Nanoscale, 2016, 8(33): 15281-15287.
[20]HAIDER Z, ZHENG J Y, KANG Y S. Surfactant free fabrication and improved charge carrier separation induced enhanced photocatalytic activity of {001} facet exposed unique octagonal BiOCl nanosheets[J]. Physical Chemistry Chemical Physics, 2016, 18(29): 19595-19604.
[21]LI Q, GUAN Z, WU D, et al. Z-scheme BiOCl-Au-CdS heterostructure with enhanced sunlight-driven photocatalytic activity in degrading water dyes and antibiotics[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 6958-6968.
[22]MI Y, WEN L, WANG Z, et al. Fe(III)modified BiOCl ultrathin nanosheet towards high-efficient visible-light photocatalyst[J]. Nano Energy, 2016, 30(1): 109-117.
[23]ZHU M, LIU Q, CHEN W, et al. Boosting the visible-light photoactivity of BiOCl/BiVO4/N-GQDs ternary heterojunctions based on internal Z-Scheme charge transfer of N-GQDs: simultaneous band gap narrowing and carrier lifetime prolonging[J]. ACS Applied materials & Interfaces, 2017, 9(44): 38832-38841.
[24]MA Z, MING H, HUANG H, et al. One-step ultrasonic synthesis of fluorescent N-doped carbon dots from glucose and their visible-light sensitive photocatalytic ability[J]. New Journal of Chemistry, 2012, 36(4): 861-864.
[25]ZOU J P, WANG L C, LUO J, et al. Synthesis and efficient visible light photocatalytic H2 evolution of a metal-free g-C3N4/graphene quantum dots hybrid photocatalyst[J]. Applied Catalysis B: Environmental, 2016, 193(1): 103-109.
[26]DI J, XIA J, JI M, et al. Nitrogen-doped carbon quantum dots/BiOBr ultrathin nanosheets: in situ strong coupling and improved molecular oxygen activation ability under visible light irradiation[J]. ACS Sustainable Chemistry & Engineering, 2015, 4(1): 136-146.
[27]ZHANG X Y, LI H P, LIN Y H, et al. Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting chin[J]. Journal of Materials Chemistry, 2010, 20(14): 2801-2806.

备注/Memo

备注/Memo:
收稿日期:2017-12-29。
基金项目:江苏省自然科学基金项目(BK20151183); 江苏省教育厅高校自然科学基金重大项目(17KJA150001)。
作者简介:邬纯晶(1994—), 女, 黑龙江绥化人, 硕士生。通讯联系人: 许娟(1980—), E-mail: 663762411@qq.com
更新日期/Last Update: 2018-05-20