[1]储富强,储徐烽,祝缓缓,等.质子型离子液体/功能SiO2复合高温质子交换膜的制备与表征[J].常州大学学报(自然科学版),2018,30(04):13-18.[doi:10.3969/j.issn.2095-0411.2018.04.003]
 CHU Fuqiang,CHU Xufeng,ZHU Huanhuan,et al.Synthesis and Characterization of Protic Ionic Liquid/Functionalized SiO2 Composite High Temperature Pronton Exchange Membranes[J].Journal of Changzhou University(Natural Science Edition),2018,30(04):13-18.[doi:10.3969/j.issn.2095-0411.2018.04.003]
点击复制

质子型离子液体/功能SiO2复合高温质子交换膜的制备与表征()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第30卷
期数:
2018年04期
页码:
13-18
栏目:
化学化工
出版日期:
2018-07-28

文章信息/Info

Title:
Synthesis and Characterization of Protic Ionic Liquid/Functionalized SiO2 Composite High Temperature Pronton Exchange Membranes
作者:
储富强12储徐烽1 祝缓缓1徐 斐1丁建宁12
1. 常州大学 材料科学与工程学院,江苏 常州 213164; 2. 江苏省光伏科学与工程协同创新中心,江苏 常州 213164
Author(s):
CHU Fuqiang12 CHU Xufeng1 ZHU Huanhuan XU Fei DING Jianning12
1. School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China; 2. Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou 213164, China
关键词:
燃料电池 质子交换膜 离子液体 纳米材料
Keywords:
fuel cells proton exchange membrane ionic liquids nano-materials
分类号:
O 69
DOI:
10.3969/j.issn.2095-0411.2018.04.003
文献标志码:
A
摘要:
通过正硅酸四乙酯水解制备了粒径约为70 nm球形SiO2纳米粒子,合成了1-甲基-3-[(三乙氧基)丙基]咪唑氯化物(离子液体),并对SiO2纳米粒子进行表面修饰得到离子液体表面修饰的功能SiO2(Im-SiO2)。以苯乙烯、丙烯腈为基体材料、以质子型离子液体为质子导体,通过掺杂Im-SiO2制备复合高温质子交换膜。通过扫描电子显微镜、热重分析仪和电化学工作站研究了质子交换膜的微观形貌、热稳定性和电导率,并考察了Im-SiO2的含量对质子交换膜性能的影响。研究发现,复合质子交换膜的最高电导率可达10-2 S·cm-1。Im-SiO2的掺杂对质子交换膜的热稳定性影响不大,但适量Im-SiO2的掺杂有助于提高质子交换膜的导电性能以及保离子液体的能力。这些结果表明该类复合质子交换膜是高温质子交换膜燃料电池理想的隔膜材料,具有很好的应用前景。
Abstract:
Monodispersed silica nanoparticles with mean diameter of 70 nm were prepared by hydrolysis of tetraethyl orthosilicate. Ionic liquid, 1-methyl-3-[(triethoxysilyl)propyl]imidazolium chloride(TMICl)was synthesized and used to modify the surface of silica nanoparticles. The high temperature proton exchange membranes(PEMs)were synthesized via in situ cross-linking of a mixture containing styrene, acrylonitrile, protic ionic liquids(PILs), and ionic liuid(TMICl)functionalized silica nanoparticles(Im-SiO2). The morphology, thermal stability and conductivity of PEMs were characterized by scanning electron microscopy, thermogravimetric analyzer and electrochemical workstation, respectively. The effect of Im-SiO2 content on the properties of the PEMs was systematically studied. The results showed that the Im-SiO2 content has little influence on the thermal stability of the PEMs. However, the addition of proper content of Im-SiO2 could effectively increase the proton conductivity and prevent the release of PIL component from the composite membranes. These results make the PEMs show good potential applications in proton exchange membrane fuel cells.

参考文献/References:


[1] ZHANG H, SHEN P K. Recent development of polymer electrolyte membranes for fuel cells[J]. Chem Rev, 2012, 112:2780-2832.
[2]SHIN D W, GUIVER M D, LEE Y. Hydrocarbon-based polymer electrolyte membranes: importance of morphology on ion transport and membrane stability[J]. Chem Rev, 2017, 117:4759-4805.
[3]SHERAZI T A, AHMADS, KASHMIRI M A, et al. Radiation-induced grafting of styrene onto ultra-high molecular weight polyethylene powder for polymer electrolyte fuel cell application: II. sulfonation and characterization[J]. J Membr Sci, 2009, 333(1): 59-67.
[4]ZHANG H, WU W, WANG J, et al.Enhanced anhydrous proton conductivity of polymer electrolyte membrane enabled by facile ionic liquid-based hoping pathways[J]. J Membr Sci, 2015, 476: 136-147.
[5]LEE S I, YOON K H, SONG M, et al. Structure and properties of polymer electrolyte membranes containing phosphonic acids for anhydrous fuel cells[J]. Chem Mater, 2013, 24(1): 115-122.
[6]WANG G, KANG H L, LEE W H, et al. Durable sulfonated poly(benzothiazole-co-benzimidazole)proton exchange membranes[J]. Macromolecules, 2014, 47(18): 6355-6364.
[7]WANG G, LEE K H, LEE W H, et al. Soluble sulfonated polybenzothiazoles containing naphthalene for use as proton exchange membranes[J]. J Membr Sci, 2015, 490: 346-353.
[8]DI NOTO V, GLIUBIZZI R, NEGOR E, et al. Effect of SiO2 on relaxation phenomena and mechanism of ion conductivity of [Nafion/(SiO2)x] composite membranes[J]. J Phys Chem B, 2006, 110(49): 24972-24986.
[9]DI VONA M L, AHMED Z, BELLITTO S, et al. SPEEK-TiO2 nanocomposite hybrid proton conductive membranes via in situ mixed sol-gel process[J]. J Membr Sci, 2007, 296(1): 156-161.
[10]KUMAR K S, RAJENDRAN S, PRABHU M R. A study of influence on sulfonated TiO2-Poly(vinylidene fluoride-co-hexafluoropropylene)nano composite membranes for PEM Fuel cell application[J]. Appl Surf Sci, 2016, 418: 64-71.
[11]LIN B, CHENG S, QIU L, et al.Protic ionic liquid-based hybrid proton-conducting membranes for anhydrous proton exchange membrane application[J]. Chem Mater, 2010, 22(5): 1807-1813.
[12]邓友全. 离子液体:性质、制备与应用[M]. 北京:中国石化出版社,2006.
[13]STOBER W, FINK A, BOHN E. Controlled growth of monodisperse silica spheres in the micron size range[J]. J Colloid Interface Sci, 1968, 26: 62-69.
[14]FERNICOLA A, PANERO S, SCROSATI B, et al. New types of Br?nsted acid-base ionic liquids-based membranes for applications in PEMFCs[J]. ChemPhysChem, 2007, 8: 1103-1107.
[15]CHEN X, LI Q, ZHAO J. Ionic liquid-tethered nanoparticle/poly(ionic liquid)electrolytes for quasi-solid-state dye-sensitized solarcells[J]. J Power Sources, 2012, 207: 216-221.
[16]LIN B, QIAO G, CHU F, et al. Phosphoric acid doped hydrophobic ionic liquid-based composite membranes for anhydrous proton exchange membrane application[J]. RSC Adv, 2017, 7: 1056-1061.

相似文献/References:

[1]林本才,冯天,乔刚,等.交联剂含量对碱性阴离子交换膜性能的影响[J].常州大学学报(自然科学版),2015,(03):13.[doi:10.3969/j.issn.2095-0411.2015.03.003]
 LIN Bencai,FENG Tianying,QIAO Gang,et al.Effect of the Content of Crosslinker on the Performance of Alkaline Anion Exchange Membrane[J].Journal of Changzhou University(Natural Science Edition),2015,(04):13.[doi:10.3969/j.issn.2095-0411.2015.03.003]

备注/Memo

备注/Memo:
基金项目:国家自然科学基金资助项目(21476031,51303017); 江苏省高校自然科学基金重大项目(17KJA430002)。
作者简介:储富强(1976—),男,江苏宜兴人,博士,高级工程师。E-mail:cfq@cczu.edu.cn
更新日期/Last Update: 2018-07-30