[1]赵 旭,王丙涛,张思娴,等.元素含量分析应用于泰国香米原产地鉴别[J].常州大学学报(自然科学版),2018,30(04):36-40.[doi:10.3969/j.issn.2095-0411.2018.04.006]
 ZHAO Xu,WANG Bingtao,ZHANG Sixian,et al.Regional Discrimination of Thai Rice by Multi-Element Analysis[J].Journal of Changzhou University(Natural Science Edition),2018,30(04):36-40.[doi:10.3969/j.issn.2095-0411.2018.04.006]
点击复制

元素含量分析应用于泰国香米原产地鉴别()
分享到:

常州大学学报(自然科学版)[ISSN:2095-0411/CN:32-1822/N]

卷:
第30卷
期数:
2018年04期
页码:
36-40
栏目:
化学化工
出版日期:
2018-07-28

文章信息/Info

Title:
Regional Discrimination of Thai Rice by Multi-Element Analysis
作者:
赵 旭王丙涛张思娴靳保辉赵琼晖梁淑雯颜 治陈 波谢丽琪
深圳出入境检验检疫局 食品检验检疫技术中心,深圳市食品安全检测技术研发重点实验室,广东 深圳 518067
Author(s):
ZHAO Xu WANG Bingtao ZHANG Sixian JIN Baohui ZHAO Qionghui LIANG Shuwen YAN Zhi CHEN Bo XIE Liqi
Food Inspection Center, Shenzhen Entry-Exit Inspection and Quarantine Bureau, Shenzhen Key Laboratory of Detection Technology for Food Safety, Shenzhen 518067, China
关键词:
香米 电感耦合等离子体质谱法 电感耦合等离子体光谱法 产地鉴别
Keywords:
rice inductively coupled plasma-atomic spectrometry(ICP-MS) inductively coupled plasma-atomic emission spectrometry(ICP-OES) regional discrimination
分类号:
O 621.3
DOI:
10.3969/j.issn.2095-0411.2018.04.006
文献标志码:
A
摘要:
利用元素分析法对3个产地的香米进行鉴别,利用电感耦合等离子体质谱法(ICP-MS)和电感耦合等离子体光谱法(ICP-OES)对来自泰国、江西、湖南3个地区的180份香米进行包括钙、铁、钾、镁、锌、硼、铝、铬、锰、钴、镍、铜、砷、锶、硒、镉、铯、钡、铅19种元素在内的含量分析,通过判别分析建立判别模型。判别模型对泰国香米自校验交叉校验准确率100%,拥有极高的准确率。
Abstract:
The research set up a regional discrimination method for 3 kinds of rice by multi-element analysis. 180 kinds of rice from 3 places of origin were collected, including Thailand, Jiangxi, Hunan. The concentration of 19 elements(Ca, Fe, K, Mg, Zn, B, Al, Cr, Mn, Co, Ni, Cu, As, Sr, Se, Cd, Cs, Ba, Pb)were determined by ICP-MS or ICP-OES. Discriminatory analysis was applied in building up a regional discrimination model, which reached an accuracy of 100% for both self verification and cross validation.

参考文献/References:


[1] MOREDA-PINEIRO A, FISHER A, HILL S J, et al. The classification of tea according to region of origin using pattern recognition techniques and trace metal data [J]. Journal of Food Composition and Analysis, 2003, 16(2): 195-211.
[2]FERNANDEZ-CACERES P L,MARTIN M J,PABLOS F, et al. Differentiation of tea(Camelliasinensis)varieties and their geographical origin according to their metal content [J]. J Agric Food Chem, 2001,49(10): 4775-4779.
[3]陈波,靳保辉,梁宏,等. 近红外光谱技术与聚类分析鉴别中国名茶[J]. 光谱实验室,2012,29(5):2901-2905.
[4]康海宁,杨妙峰,陈波,等. 利用矿质元素的测定数据判别茶叶的产地和品种[J]. 岩矿测试,2006,25(1):22-26.
[5]王小平, 李柏. ICP-OES和ICP-MS测定中日两国大米中27种矿质元素含量[J]. 光谱学与光谱分析, 2010, 30(8):2260-2264.
[6]LINDE G V, FISCHER J L, COETZEE P P. Multi-element analysis of South African wines and their provenance soils by ICP-MS and their classification according to geographical origin using multivariate statistics[J]. South African Journal for Enology and Viticulture, 2010,31(2): 143-153.
[7]黄淑珍.湖南香稻产地土壤特性与稻米品质的关系[J].湖南农业科学,1990(4): 37-40.
[8]GONZALVEZ A, ARMENTA S, DE LA G M. Geographical traceability of “Arros de Valencia” rice grain based on mineral element composition [J]. Food Chemistry, 2011,126(3): 1254-1260.
[9]曾亚文,汪禄祥,普晓英,等.ICP-AES检测云南稻核心种质矿质元素含量的地带性特征[J].光谱学与光谱分析杂志,2009(6): 1691-1695.
[10]曾亚文,汪禄祥,杜娟,等.ICP-AES法检测云南稻精米和糙米与土壤矿质元素间的关联性[J].光谱学与光谱分析杂志,2009, 29(5): 1413-1417.
[11]陈波,张巍,康海宁,等.茶叶的1H NMR指纹图谱研究[J].波谱学杂志,2006,23(2):169-180.
[12]袁玉伟,张永志,付海燕.茶叶中同位素与多元素特征及其原产地PCA-LDA判别研究[J].核农学报,2013,27(1):47-55.
[13]LIANG M,PATRIC L,MIKKEL B,et al. Tea classification and quality assessmentusing laser-induced fluorescence and chemometric evaluation[J].Applied Optics,2012,51(7):803-811.
[14]周健,成浩,曾建明,等.基于近红外的多相偏最小二乘模型组合分析实现茶叶原料品种鉴定与溯源的研究[J].光谱学与光谱分析,2010,30(10):2650-2653.
[15]王丙涛,陈波,涂小珂,等.葡萄酒中元素分布与其原产地关系的分类模型[J].食品科学,2013,35(2):61-64.
[16]夏立娅,申世刚,刘峥颢,等.基于近红外光谱和模式识别技术鉴别大米产地的研究[J].光谱学与光谱分析,2013,33(1):102-105.
[17]钱丽丽,张爱武,吕海峰,等.大米理化指标指纹在产地溯源的探究[J].中国粮油学报,2016,31(1):1-4.(责任编辑:殷丽莉)

备注/Memo

备注/Memo:
基金项目:深圳出入境检验检疫局科技计划项目(SZ2014209)。
作者简介:赵旭(1984—),男,吉林吉林人,硕士,工程师。E-mail:54702986@qq.com
更新日期/Last Update: 2018-07-30